Question
Mathematics Question on Quadratic Equations
Given tan A and tan B are the roots of x2−ax+b=0 . The value of sin2(A+B) is
A
a2+(1−b)2a2
B
a2+b2a2
C
(a+b)2a2
D
a2+(1−b)2b2
Answer
a2+(1−b)2a2
Explanation
Solution
Given that tan A and tan B are the roots of x2−ax+b=0. ∴ tanA+tanB=a and tanA tanB=b Now, tan(A+B)=1−tanAtanBtanA+tanB=1−ba Now, sin2(A+B)=21[1−cos2(A+B)] =21[1−1+tan2(A+B)1−tan2(A+B)] =21[1+tan2(A+B)1+tan2(A+B)−tan2(A+B)] =[1+tan2(A+B)tan2(A+B)]=(1−b)2[a2+(1−b)2]a2/(1−b)2 =a2+(1−b)2a2