Question
Mathematics Question on Trigonometric Ratios
Given sec θ=1213, calculate all other trigonometric ratios.
Consider a right-angle triangle Δ ABC, right-angled at point B
sec θ=Side Adjacent to ∠θHypotenuse
=1213=ABAC
If AC is 13k, AB will be 12k, where k is a positive integer.
Applying Pythagoras theorem in ΔABC, we obtain
(AC)2=(AB)2+(BC)2
(13k)2=(12k)2+(BC)2
169k2=144k2+ BC2
25k2= BC2
BC=5k
\text{ sin}\ \theta = \frac{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠\theta }{\text{Hypotenuse}}$$=\frac{BC}{AC}=\frac{5k}{13k}=\frac{5}{13}
\text{ cos}\ \theta = \frac{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠\theta }{\text{Hypotenuse}}$$=\frac{AB}{AC}=\frac{12k}{13k}=\frac{12}{13}
\text{tan}\ (\theta) =\frac{ \text{Side}\ \text{ Opposite}\ \text{ to}\ \text{ ∠θ}}{\text{Side}\ \text{ Adjacent }\ \text{to}\ ∠\theta}$$=\frac{BC}{AB}=\frac{5k}{12k}=\frac{5}{12}
\text{cosec} \ (\theta) = \frac{\text{Hypotenuse}}{\text{Side}\ \text{ Opposite}\ \text{ to} \ ∠\theta}$$=\frac{AC}{BC}=\frac{13k}{5k}=\frac{13}{5}