Solveeit Logo

Question

Mathematics Question on Trigonometric Ratios

Given sec θ=1312 θ =\frac{13}{12}, calculate all other trigonometric ratios.

Answer

Consider a right-angle triangle ΔΔ ABC, right-angled at point B
sec θ =13/12,calculate all other trigonometric ratios

 sec θ=HypotenuseSide  Adjacent  to θ\text{ sec}\ \theta = \frac{\text{Hypotenuse}}{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠\theta }

=1312=ACAB=\frac{13}{12}=\frac{AC}{AB}
If AC is 13k, AB will be 12k, where k is a positive integer.

Applying Pythagoras theorem in ΔΔABC, we obtain
(AC)2=(AB)2+(BC)2(\text{AC})^ 2 = (\text{AB}) ^2 + (\text{BC})^ 2
(13k)2=(12k)2+(BC)2(13k) ^2 = (12k) ^2 + (BC)^ 2
169k2=144k2+ BC2169k^ 2 = 144k^ 2 +\text{ BC}^ 2
25k2= BC225k ^2 =\text{ BC}^ 2
BC=5k\text{BC} = 5k

\text{ sin}\ \theta = \frac{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠\theta }{\text{Hypotenuse}}$$=\frac{BC}{AC}=\frac{5k}{13k}=\frac{5}{13}

\text{ cos}\ \theta = \frac{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠\theta }{\text{Hypotenuse}}$$=\frac{AB}{AC}=\frac{12k}{13k}=\frac{12}{13}

\text{tan}\ (\theta) =\frac{ \text{Side}\ \text{ Opposite}\ \text{ to}\ \text{ ∠θ}}{\text{Side}\ \text{ Adjacent }\ \text{to}\ ∠\theta}$$=\frac{BC}{AB}=\frac{5k}{12k}=\frac{5}{12}

\text{cosec} \ (\theta) = \frac{\text{Hypotenuse}}{\text{Side}\ \text{ Opposite}\ \text{ to} \ ∠\theta}$$=\frac{AC}{BC}=\frac{13k}{5k}=\frac{13}{5}