Solveeit Logo

Question

Question: Given radius of earth ‘R’ and length of a day ‘T’ the height of a geostationary satellite is [G – G...

Given radius of earth ‘R’ and length of a day ‘T’ the height of a geostationary satellite is

[G – Gravitational constant, M – Mass of earth]

A

(4π2GMT2)1/3\left( \frac{4\pi^{2}GM}{T^{2}} \right)^{1/3}

B

(4πGMR2)1/3R\left( \frac{4\pi GM}{R^{2}} \right)^{1/3} ⥂ - R

C

(GMT24π2)1/3R\left( \frac{GMT^{2}}{4\pi^{2}} \right)^{1/3} ⥂ - R

D

(GMT24π2)1/3+R\left( \frac{GMT^{2}}{4\pi^{2}} \right)^{1/3} ⥂ + R

Answer

(GMT24π2)1/3R\left( \frac{GMT^{2}}{4\pi^{2}} \right)^{1/3} ⥂ - R

Explanation

Solution

From the expression h=(T2gR24π2)1/3Rh = \left( \frac{T^{2}gR^{2}}{4\pi^{2}} \right)^{1/3} - R \therefore h=(GMT24π2)1/3Rh = \left( \frac{GMT^{2}}{4\pi^{2}} \right)^{1/3} ⥂ - R [As gR2=GMgR^{2} = GM]