Solveeit Logo

Question

Question: Given,\(POC{l_3}\) hydrolysed in water to give \({H_3}P{O_4}\) and \({\text{HCl}}\) only. What volum...

Given,POCl3POC{l_3} hydrolysed in water to give H3PO4{H_3}P{O_4} and HCl{\text{HCl}} only. What volume of 2 M Ca(OH)22{\text{ M Ca}}{\left( {OH} \right)_2} is needed to completely react with 50 ml , 0.1 M50{\text{ ml , 0}}{\text{.1 M}} POCl3POC{l_3} solution.
(i) 5 ml(i){\text{ 5 ml}}
(ii) 7.5 ml(ii){\text{ 7}}{\text{.5 ml}}
(iii) 15 ml(iii){\text{ 15 ml}}
(iv) 10 ml(iv){\text{ 10 ml}}

Explanation

Solution

Here we need to calculate the volume of 2 M Ca(OH)22{\text{ M Ca}}{\left( {OH} \right)_2} which will completely react with 50 ml , 0.1 M50{\text{ ml , 0}}{\text{.1 M}} POCl3POC{l_3}solution. We will find the number of equivalents of the H3PO4{H_3}P{O_4} and HCl{\text{HCl}},then by using normality equation, we will find the volume of 2 M Ca(OH)22{\text{ M Ca}}{\left( {OH} \right)_2}.
Formula Used:
N1V1 = N2V2{{\text{N}}_1}{{\text{V}}_1}{\text{ = }}{{\text{N}}_2}{{\text{V}}_2}

Complete Answer:
When we add water to POCl3POC{l_3}, we get the Phosphoric acid and hydrochloric acid. Phosphoric acid is a weak acid while hydrochloric acid is strong acid. The reaction between water and POCl3POC{l_3} can be represented as,
V2 = 7.5 ml{{\text{V}}_2}{\text{ = 7}}{\text{.5 ml}}
Thus three moles of water is consumed with POCl3POC{l_3} to produce one mole of H3PO4{{\text{H}}_3}{\text{P}}{{\text{O}}_4} and three moles of HCl{\text{HCl}}. Now we will find the equivalents of both H3PO4{H_3}P{O_4} and HCl{\text{HCl}}. The number of equivalent can be calculated as-
equivalent = volume × molarity × n - factor{\text{equivalent = volume }} \times {\text{ molarity }} \times {\text{ n - factor}}
Thus for H3PO4{H_3}P{O_4}, number of equivalent is,
Volume of solution = 50 ml = {\text{ }}50{\text{ ml}}
Molarity of solution = 0.1 M = {\text{ 0}}{\text{.1 M}}
n - factor = 3{\text{n - factor = 3}}
equivalent = 50 × 0.1 × 3{\text{equivalent = 50 }} \times {\text{ 0}}{\text{.1 }} \times {\text{ 3}}
Similarly we can calculate the equivalent of HCl{\text{HCl}}produced. Since three moles of HCl{\text{HCl}} we have to multiply the equivalent by three. Thus for, HCl{\text{HCl}} number of equivalent is,
equivalent = 50 × 0.1 × 1 × 3{\text{equivalent = 50 }} \times {\text{ 0}}{\text{.1 }} \times {\text{ 1 }} \times {\text{ 3}}
We know that the product of normality and volume of solution is equal to equivalents of solute. Also Therefore,
N1V1= 6 × 50 × 0.1{{\text{N}}_{\text{1}}}{{\text{V}}_1} = {\text{ 6 }} \times {\text{ 50 }} \times {\text{ 0}}{\text{.1}}.
Let the volume of Ca(OH)2Ca{\left( {OH} \right)_2} be V2{{\text{V}}_2}. Hence we can find the normality N2{N_2} of Ca(OH)2Ca{\left( {OH} \right)_2} as .
N2= Molarity × n - factor{N_2} = {\text{ Molarity }} \times {\text{ n - factor}}
N2= 2 × 2{N_2} = {\text{ 2 }} \times {\text{ 2}}
Now we know that from equation of normality we have,
N1V1 = N2V2{{\text{N}}_1}{{\text{V}}_1}{\text{ = }}{{\text{N}}_2}{{\text{V}}_2}
Substituting the values we get,
 6 × 50 × 0.1 = 2 × 2 × V2{\text{ 6 }} \times {\text{ 50 }} \times {\text{ 0}}{\text{.1 = 2 }} \times {\text{ 2 }} \times {\text{ }}{{\text{V}}_2}
On solving the equation we get,
V2 = 7.5 ml{{\text{V}}_2}{\text{ = 7}}{\text{.5 ml}}
Thus the volume of Ca(OH)2Ca{\left( {OH} \right)_2} required is 7.5 ml{\text{7}}{\text{.5 ml}}.

Note:
The product of normality and the volume of the solution gives us the number of the equivalents of the solute. Here the equivalent is called milli-equivalents because the volume is in milli-litre. Also n-factor is calculated as the basicity for base and acidity for an acid. Since Phosphoric acid can donate three hydrogen ions to a base therefore its n-factor is three.