Solveeit Logo

Question

Question: Given :\(\overset{\rightarrow}{P} = \overset{\rightarrow}{A} - \overset{\rightarrow}{B}\) and P = A ...

Given :P=AB\overset{\rightarrow}{P} = \overset{\rightarrow}{A} - \overset{\rightarrow}{B} and P = A + B. The angle between A\overset{\rightarrow}{A} and B\overset{\rightarrow}{B} is –

A

(a)000^{0}

A

(b)90090^{0}

A

(c)1800180^{0}

A

(d)2700270^{0}

Explanation

Solution

(c)

(A + B) = A2+B22ABcosθ\sqrt{A^{2} + B^{2} - 2AB\cos\theta}

A2 + B2 + 2AB = A2 + B2 – 2AB cos q

2AB (1 + cos q) = 0

cos q = – 1

q = 1800