Solveeit Logo

Question

Question: Given ![](https://cdn.pureessence.tech/canvas_608.png?top_left_x=1551&top_left_y=1274&width=300&heig...

Given which of the following

Statements is not correct?

A

A,B,C\overrightarrow { \mathrm { A } } , \overrightarrow { \mathrm { B } } , \overrightarrow { \mathrm { C } } and must each be a null vector

B

The magnitude of (A+C)( \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { C } } ) equals the magnitude of (B+D)( \vec { B } + \vec { D } )

C

The magnitude of A\vec { A } can never by greater than the sum of the magnitude of B,C\overrightarrow { \mathrm { B } } , \overrightarrow { \mathrm { C } } and D\overrightarrow { \mathrm { D } }

D

must lie in the plane of and if A\vec { A } and are not collinear and in the line of and , if they are collinear

Answer

A,B,C\overrightarrow { \mathrm { A } } , \overrightarrow { \mathrm { B } } , \overrightarrow { \mathrm { C } } and must each be a null vector

Explanation

Solution

(1) The statement is not correct. It is because

can be zero in many ways other than

and beings each a null vector.

(2) The statement is correct as proved below.

A+C=B+D\therefore | \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { C } } | = | \overrightarrow { \mathrm { B } } + \overrightarrow { \mathrm { D } } |

(3) The statement is correct as proved below

A+B+C+D=0\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } + \overrightarrow { \mathrm { C } } + \overrightarrow { \mathrm { D } } = \overrightarrow { 0 } or A=(B+C+D)\overrightarrow { \mathrm { A } } = - ( \overrightarrow { \mathrm { B } } + \overrightarrow { \mathrm { C } } + \overrightarrow { \mathrm { D } } )

(4) The statement is correct as proved below

A+B+C+D=0\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } + \overrightarrow { \mathrm { C } } + \overrightarrow { \mathrm { D } } = \overrightarrow { 0 } or A+(B+C)+D=0\overrightarrow { \mathrm { A } } + ( \overrightarrow { \mathrm { B } } + \overrightarrow { \mathrm { C } } ) + \overrightarrow { \mathrm { D } } = \overrightarrow { 0 }

The resultant sum of three vectors and can be zero only if () lies in the plane of and and these three vectors are represented by the three sides of a triangle taken in one order. If and D\vec { D } are collinear, then must be in the line of and D\vec { D } are collinear, then the vector sum of all the vectors will be zero.