Solveeit Logo

Question

Question: Given \(\mathbf{a} = \mathbf{i} + \mathbf{j} - \mathbf{k},\mathbf{b} = - \mathbf{i} + 2\mathbf{j} + ...

Given a=i+jk,b=i+2j+k\mathbf{a} = \mathbf{i} + \mathbf{j} - \mathbf{k},\mathbf{b} = - \mathbf{i} + 2\mathbf{j} + \mathbf{k} and c=i+2jk.\mathbf{c} = - \mathbf{i} + 2\mathbf{j} - \mathbf{k}. A unit vector perpendicular to both a+b\mathbf{a} + \mathbf{b} and b+c\mathbf{b} + \mathbf{c} is

A

i

B

j

C

k

D

i+j+k3\frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}

Answer

k

Explanation

Solution

Obviously, b+c=2i+4j\mathbf{b} + \mathbf{c} = - 2\mathbf{i} + 4\mathbf{j} and a+b=3j.\mathbf{a} + \mathbf{b} = 3\mathbf{j}.

Hence the unit vector k\mathbf{k} is perpendicular to both b+c\mathbf{b} + \mathbf{c} and a+b.\mathbf{a} + \mathbf{b}.