Solveeit Logo

Question

Question: Given \(\log 6\ and\ \log 8\), then the only logarithm that cannot be obtained without using the tab...

Given log6 and log8\log 6\ and\ \log 8, then the only logarithm that cannot be obtained without using the table is,
A. log64\log 64
B. log21\log 21
C. log83\log \dfrac{8}{3}
D. log9\log 9

Explanation

Solution

Hint: We will be using the concepts of logarithm functions to solve the problem. We will start by using the properties of logarithm that loga×b=loga+logb\log a\times b=\log a+\log b then we will use this property to express the given options in terms of log6 and log8\log 6\ and\ \log 8 in the process we will find the option which cannot be expressed in the form of log6 and log8\log 6\ and\ \log 8 so we will use the approach of option checking to further make the process of finding a solution easy.

Complete step-by-step answer:
Now, we have been given log6 and log8\log 6\ and\ \log 8 and we have to find the logarithm given in options which cannot be found by using the log6 and log8\log 6\ and\ \log 8.
So, in option (A) we have log64\log 64.
Now, we know that logabm=mlogab{{\log }_{a}}{{b}^{m}}=m{{\log }_{a}}b.
Therefore,
log64=log82 =2log8 \begin{aligned} & \log 64=\log {{8}^{2}} \\\ & =2\log 8 \\\ \end{aligned}
Since, we know log8\log 8. Therefore, log64\log 64 can be found.
Now, in option (B) we have log21\log 21.
Now, we know the logarithmic identity that,
loga×b=loga+logb\log a\times b=\log a+\log b
So, we have
log21=log3×7 =log3+log7 \begin{aligned} & \log 21=\log 3\times 7 \\\ & =\log 3+\log 7 \\\ \end{aligned}
Now, log3\log 3 can be found. We have been given,
log6=log2×3=log2+log3 log6=log2+log3 \begin{aligned} & \log 6=\log 2\times 3=\log 2+\log 3 \\\ & \log 6=\log 2+\log 3 \\\ \end{aligned}
Now, we will multiply and divide by 3 with log2\log 2.
log6=3log23+log3 log6=log233+log3 log6=log83+log3..........(1) \begin{aligned} & \log 6=\dfrac{3\log 2}{3}+\log 3 \\\ & \log 6=\dfrac{\log {{2}^{3}}}{3}+\log 3 \\\ & \log 6=\dfrac{\log 8}{3}+\log 3..........\left( 1 \right) \\\ \end{aligned}
So, we can find the value of log(3)\log \left( 3 \right) from (1) but log(7)\log \left( 7 \right) cannot be found using a similar method.
Now similarly we have option (C ) as log(83)\log \left( \dfrac{8}{3} \right)
Now we know the logarithmic identity that
log(ab)=log(a)log(b)\log \left( \dfrac{a}{b} \right)=\log \left( a \right)-\log \left( b \right)
Therefore the option (c ) can be written as
log(83)=log(8)log(3)\log \left( \dfrac{8}{3} \right)=\log \left( 8 \right)-\log \left( 3 \right)
Now we know the value of log(8)\log \left( 8 \right) from the data given to us and we have the value of log(3)\log \left( 3 \right) from the equation (1) so we can determine the value of option ( C) .
Now in option (D) we have log9\log 9
We will now use the logarithmic identity that log(am)=mlog(a)\log \left( {{a}^{m}} \right)=m\log \left( a \right)
log(9)=log(32) log(32)=2log(3) \begin{aligned} & \log \left( 9 \right)=\log \left( {{3}^{2}} \right) \\\ & \Rightarrow \log \left( {{3}^{2}} \right)=2\log \left( 3 \right) \\\ \end{aligned}
Now we know the value of log(3)\log \left( 3 \right)from equation (1) so we can find the value of the option (D) also.
Therefore, option (B) can’t be obtained without using logarithmic table.
Hence, the answer of the question is option (B).

Note: To solve these type of questions it is important to remember logarithmic identities like,
log(a×b)=loga+logb logbm=mlogb logab=logalogb \begin{aligned} & \log \left( a\times b \right)=\log a+\log b \\\ & \log {{b}^{m}}=m\log b \\\ & \log \dfrac{a}{b}=\log a-\log b \\\ \end{aligned}
It is important to note how we have used the value of log6 and log8\log 6\ and\ \log 8 to find the value of log(3)\log \left( 3 \right) by using the logarithmic identities mentioned above this trick is crucial in solving the options (C ) and (D).