Solveeit Logo

Question

Question: Given \(\log 2\) and \(\log 3\) , find the value of \(\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{...

Given log2\log 2 and log3\log 3 , find the value of log(483×10814÷612)\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right) .

Explanation

Solution

Hint: The given question is related to logarithms and its properties. Try to recall the properties of logarithms which are related to logarithm of product and division of two numbers and logarithms of numbers with exponents.

Complete step-by-step answer:
Before solving the problem , we must know about the properties of logarithms. The following properties will be used in solving the question :

log(a×b)=log(a)+log(b)\log (a\times b)=\log (a)+\log (b)
log(ab)=log(a)log(b)\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)
log(a)b=b×log(a)\log {{(a)}^{b}}=b\times \log (a)
Now , we know that an\sqrt[n]{a} can be written as a1n{{a}^{\dfrac{1}{n}}} , or we can say an=a1n\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}.
So , we can write 483\sqrt[3]{48} as 4813{{48}^{\dfrac{1}{3}}} and 612\sqrt[12]{6} as 6112{{6}^{\dfrac{1}{12}}} .
Now , we need to find the value of log(483×10814÷612)\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right).
We know , 483=4813\sqrt[3]{48}={{48}^{\dfrac{1}{3}}} and 612=6112\sqrt[12]{6}={{6}^{\dfrac{1}{12}}}. So , log(483×10814÷612)=log(4813×10814÷6112)\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\log \left( {{48}^{\dfrac{1}{3}}}\times {{108}^{\dfrac{1}{4}}}\div {{6}^{\dfrac{1}{12}}} \right).
Now , we know log(a×b)=log(a)+log(b)\log (a\times b)=\log (a)+\log (b) and log(ab)=log(a)log(b)\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b).
So, log(4813×10814÷6112)=log(4813)+log(10814)log(6112)\log \left( {{48}^{\dfrac{1}{3}}}\times {{108}^{\dfrac{1}{4}}}\div {{6}^{\dfrac{1}{12}}} \right)=\log \left( {{48}^{\dfrac{1}{3}}} \right)+\log \left( {{108}^{\dfrac{1}{4}}} \right)-\log \left( {{6}^{\dfrac{1}{12}}} \right).
Now , we know log(a)b=b×log(a)\log {{(a)}^{b}}=b\times \log (a).
So , log(4813)+log(10814)log(6112)=13log(48)+14log(108)112log(6)\log \left( {{48}^{\dfrac{1}{3}}} \right)+\log \left( {{108}^{\dfrac{1}{4}}} \right)-\log \left( {{6}^{\dfrac{1}{12}}} \right)=\dfrac{1}{3}\log (48)+\dfrac{1}{4}\log (108)-\dfrac{1}{12}\log (6)
We know we can write 4848 as 2×2×2×2×32\times 2\times 2\times 2\times 3 ; 108108 as 2×2×3×3×32\times 2\times 3\times 3\times 3 and 66 as 2×32\times 3.
So , 13log(48)+14log(108)112log(6)=13(log(2×2×2×2×3))+14(log(2×2×3×3×3))112(log(2×3))\dfrac{1}{3}\log (48)+\dfrac{1}{4}\log (108)-\dfrac{1}{12}\log (6)=\dfrac{1}{3}\left( \log \left( 2\times 2\times 2\times 2\times 3 \right) \right)+\dfrac{1}{4}\left( \log \left( 2\times 2\times 3\times 3\times 3 \right) \right)-\dfrac{1}{12}\left( \log \left( 2\times 3 \right) \right)
Now , we know log(a×b)=log(a)+log(b)\log (a\times b)=\log (a)+\log (b).
So , we can write log(2×2×2×2×3)\log \left( 2\times 2\times 2\times 2\times 3 \right) as log2+log2+log2+log2+log3=4log2+log3\log 2+\log 2+\log 2+\log 2+\log 3=4\log 2+\log 3.
Again , log(2×2×3×3×3)=log2+log2+log3+log3+log3=2log2+3log3\log \left( 2\times 2\times 3\times 3\times 3 \right)=\log 2+\log 2+\log 3+\log 3+\log 3=2\log 2+3\log 3.
And , log(2×3)=log2+log3\log \left( 2\times 3 \right)=\log 2+\log 3
Now , after calculating all these values , we can write 13log(48)+14log(108)112log(6)\dfrac{1}{3}\log (48)+\dfrac{1}{4}\log (108)-\dfrac{1}{12}\log (6) as 13(4log2+log3)+14(2log2+3log3)112(log2+log3)\dfrac{1}{3}\left( 4\log 2+\log 3 \right)+\dfrac{1}{4}\left( 2\log 2+3\log 3 \right)-\dfrac{1}{12}\left( \log 2+\log 3 \right)
Now , we will open the brackets . On opening the brackets , we get
log(483×10814÷612)=43log2+13log3+24log2+34log3112log2112log3\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\dfrac{4}{3}\log 2+\dfrac{1}{3}\log 3+\dfrac{2}{4}\log 2+\dfrac{3}{4}\log 3-\dfrac{1}{12}\log 2-\dfrac{1}{12}\log 3
Now , we will write all the terms with log2\log 2together .
So , we get log(483×10814÷612)=43log2+24log2112log2+34log3+13log3112log3\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\dfrac{4}{3}\log 2+\dfrac{2}{4}\log 2-\dfrac{1}{12}\log 2+\dfrac{3}{4}\log 3+\dfrac{1}{3}\log 3-\dfrac{1}{12}\log 3.
Now , we will take log2\log 2 and log3\log 3 common.
So , we get log(483×10814÷612)=log2(43+24112)+log3(34+13112)\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)=\log 2\left( \dfrac{4}{3}+\dfrac{2}{4}-\dfrac{1}{12} \right)+\log 3\left( \dfrac{3}{4}+\dfrac{1}{3}-\dfrac{1}{12} \right)
Now , we will take the LCM of the denominators and solve the fractions in the brackets.
To find the LCM , we will factorize the denominators.

& 3=3\times 1 \\\ & 4=4\times 1 \\\ & 12=4\times 3\times 1 \\\ \end{aligned}$$ So , the LCM of the denominators is $4\times 3=12$. So , $\left( \dfrac{4}{3}+\dfrac{2}{4}-\dfrac{1}{12} \right)=\dfrac{16+6-1}{12}=\dfrac{21}{12}=\dfrac{7}{4}$ and $\left( \dfrac{3}{4}+\dfrac{1}{3}-\dfrac{1}{12} \right)=\dfrac{9+4-1}{12}=\dfrac{12}{12}=1$ So , we can write $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)$ as $\dfrac{7}{4}\log 2+\log 3$ . Hence , the value of $\log \left( \sqrt[3]{48}\times {{108}^{\dfrac{1}{4}}}\div \sqrt[12]{6} \right)$ is $\dfrac{7}{4}\log 2+\log 3$. Note: Students generally get confused between $\log \left( \dfrac{a}{b} \right)$ and $\dfrac{\log a}{\log b}$ . Both are not the same. $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ which is not equal to $\dfrac{\log a}{\log b}$. Such confusion should be avoided and the formulas should be remembered. They are helpful in solving various problems related to logarithms.