Solveeit Logo

Question

Question: Given \(\left\\{ \begin{aligned} & \sin x+\sin y=a \\\ & \cos x+\cos y=b \\\ \end{aligned...

Given \left\\{ \begin{aligned} & \sin x+\sin y=a \\\ & \cos x+\cos y=b \\\ \end{aligned} \right., Calculate sin(xy2)\sin \left( \dfrac{x-y}{2} \right)?

Explanation

Solution

We first take the square value of the given expressions. We simplify them and add them to the identity formula of sin2α+cos2α=1{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1. We find the simplified form in the sum and use the formula of cosxcosy+sinxsiny=cos(xy)\cos x\cos y+\sin x\sin y=\cos \left( x-y \right). Then we use the submultiple formula of cosα=12sin2α2\cos \alpha =1-2{{\sin }^{2}}\dfrac{\alpha }{2}. We get sin(xy2)\sin \left( \dfrac{x-y}{2} \right) in expression. We simplify to find the solution.

Complete step by step solution:
We have been given two equations \left\\{ \begin{aligned} & \sin x+\sin y=a \\\ & \cos x+\cos y=b \\\ \end{aligned} \right..
We take the squares of the equations and simplify them. We use (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab.
(sinx+siny)2=a2 sin2x+sin2y+2sinxsiny=a2 \begin{aligned} & {{\left( \sin x+\sin y \right)}^{2}}={{a}^{2}} \\\ & \Rightarrow {{\sin }^{2}}x+{{\sin }^{2}}y+2\sin x\sin y={{a}^{2}} \\\ \end{aligned}
(cosx+cosy)2=b2 cos2x+cos2y+2cosxcosy=b2 \begin{aligned} & {{\left( \cos x+\cos y \right)}^{2}}={{b}^{2}} \\\ & \Rightarrow {{\cos }^{2}}x+{{\cos }^{2}}y+2\cos x\cos y={{b}^{2}} \\\ \end{aligned}
We now add them and get
sin2x+sin2y+2sinxsiny+cos2x+cos2y+2cosxcosy=a2+b2 (sin2x+cos2x)+(sin2y+cos2y)+2(sinxsiny+cosxcosy)=a2+b2 \begin{aligned} & {{\sin }^{2}}x+{{\sin }^{2}}y+2\sin x\sin y+{{\cos }^{2}}x+{{\cos }^{2}}y+2\cos x\cos y={{a}^{2}}+{{b}^{2}} \\\ & \Rightarrow \left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)+\left( {{\sin }^{2}}y+{{\cos }^{2}}y \right)+2\left( \sin x\sin y+\cos x\cos y \right)={{a}^{2}}+{{b}^{2}} \\\ \end{aligned}
We now use the identity theorem of sin2α+cos2α=1{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1.

& \left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)+\left( {{\sin }^{2}}y+{{\cos }^{2}}y \right)+2\left( \sin x\sin y+\cos x\cos y \right)={{a}^{2}}+{{b}^{2}} \\\ & \Rightarrow 1+1+2\left( \sin x\sin y+\cos x\cos y \right)={{a}^{2}}+{{b}^{2}} \\\ & \Rightarrow \cos x\cos y+\sin x\sin y=\dfrac{{{a}^{2}}+{{b}^{2}}-2}{2} \\\ \end{aligned}$$ We have the associative formula of $$\cos x\cos y+\sin x\sin y=\cos \left( x-y \right)$$. Therefore, $$\cos x\cos y+\sin x\sin y=\cos \left( x-y \right)=\dfrac{{{a}^{2}}+{{b}^{2}}-2}{2}$$. We now use the identity $$\cos \alpha =1-2{{\sin }^{2}}\dfrac{\alpha }{2}$$. Therefore, $$\cos \left( x-y \right)=1-2{{\sin }^{2}}\left( \dfrac{x-y}{2} \right)=\dfrac{{{a}^{2}}+{{b}^{2}}-2}{2}$$. We now simplify to find the value of $\sin \left( \dfrac{x-y}{2} \right)$. $$\begin{aligned} & 1-2{{\sin }^{2}}\left( \dfrac{x-y}{2} \right)=\dfrac{{{a}^{2}}+{{b}^{2}}-2}{2} \\\ & \Rightarrow 2{{\sin }^{2}}\left( \dfrac{x-y}{2} \right)=1-\dfrac{{{a}^{2}}+{{b}^{2}}-2}{2}=\dfrac{4-{{a}^{2}}-{{b}^{2}}}{2} \\\ & \Rightarrow {{\sin }^{2}}\left( \dfrac{x-y}{2} \right)=\dfrac{4-{{a}^{2}}-{{b}^{2}}}{4} \\\ & \Rightarrow \sin \left( \dfrac{x-y}{2} \right)=\pm \sqrt{\dfrac{4-{{a}^{2}}-{{b}^{2}}}{4}}=\pm \dfrac{\sqrt{4-{{a}^{2}}-{{b}^{2}}}}{2} \\\ \end{aligned}$$ The value of $\sin \left( \dfrac{x-y}{2} \right)$ is $$\pm \dfrac{\sqrt{4-{{a}^{2}}-{{b}^{2}}}}{2}$$. **Note:** We can’t break the given expressions using the formulas $\sin x+\sin y=2\sin \dfrac{x+y}{2}\cos \dfrac{x-y}{2}$ and $$\cos x+\cos y=2\cos \dfrac{x+y}{2}\cos \dfrac{x-y}{2}$$. In that case we can only omit the $$\cos \dfrac{x-y}{2}$$ and keep the angle of $$\dfrac{x+y}{2}$$. It is not helpful as we need the $$\cos \dfrac{x-y}{2}$$ part for $\sin \left( \dfrac{x-y}{2} \right)$.