Question
Question: Given I<sub>m</sub> =\(\int_{1}^{e}{(\log x)^{m}}\)dx. If \(\frac{I_{m}}{K} + \frac{I_{m - 2}}{L}\) ...
Given Im =∫1e(logx)mdx. If KIm+LIm−2 = e then values of K and L are –
A
1 – m, m1
B
1−m1, m
C
1−m1, m−1m(m−2)
D
m−1m, m – 2
Answer
1 – m, m1
Explanation
Solution
Im = ∫1e(logx)mdx = x (logx)m∣1e
– m∫1e(logx)m−1dx
= e – m [ x(logx)m−11e−(m−1)∫1e(logx)m−2dx]
= e – me + m (m – 1) Im–2 = (1 – m) e + m (m – 1) Im–2
So 1−mIm + m Im– 2 = e. Thus K = 1 – m and L = m1.