Question
Question: Given I<sub>m</sub> = \(\int_{1}^{e}{(\log x)^{m}}\)dx . If \(\frac{I_{m}}{K}\) + \(\frac{I_{m - 2}}...
Given Im = ∫1e(logx)mdx . If KIm + LIm−2 = e then values of K and L are –
A
1 – m ,m1
B
1−m1, m
C
1−m1,1−mm(m−2)
D
m−1m, m – 2
Answer
1 – m ,m1
Explanation
Solution
Im = ∫1e(logx)mdx = x ∫0πsinxdx – m ∫1e(logx)m−1dx
= e – m [ x(logx)m−11e−(m−1)∫1e(logx)m−2dx]
= e – me + m (m – 1) Im – 2 = (1 – m) e + m (m – 1) Im – 2
So 1−mIm + m Im – 2 = e. Thus K = 1 – m
and L = m1.