Solveeit Logo

Question

Question: Given I<sub>m</sub> = \(\int_{1}^{e}{(\log x)^{m}}\)dx . If \(\frac{I_{m}}{K}\) + \(\frac{I_{m - 2}}...

Given Im = 1e(logx)m\int_{1}^{e}{(\log x)^{m}}dx . If ImK\frac{I_{m}}{K} + Im2L\frac{I_{m - 2}}{L} = e then values of K and L are –

A

1 – m ,1m\frac{1}{m}

B

11m\frac{1}{1 - m}, m

C

11m\frac{1}{1 - m},m(m2)1m\frac{m(m - 2)}{1 - m}

D

mm1\frac{m}{m - 1}, m – 2

Answer

1 – m ,1m\frac{1}{m}

Explanation

Solution

Im = 1e(logx)m\int_{1}^{e}{(\log x)^{m}}dx = x 0πsinxdx\int _ { 0 } ^ { \pi } \sin x d x – m 1e(logx)m1dx\int_{1}^{e}{(\log x)^{m - 1}dx}

= e – m [ x(logx)m11e(m1)1e(logx)m2dx]\left\lbrack \left. \ x(\log x)^{m - 1} \right|_{1}^{e} - (m - 1)\int_{1}^{e}{(\log x)^{m - 2}dx} \right\rbrack

= e – me + m (m – 1) Im – 2 = (1 – m) e + m (m – 1) Im – 2

So Im1m\frac{I_{m}}{1 - m} + m Im – 2 = e. Thus K = 1 – m

and L = 1m\frac{1}{m}.