Solveeit Logo

Question

Question: Given \(\int_{0}^{1}\frac{\sin t}{1 + t}\)dt = a, find the value of\(\int_{4\pi - 2}^{4\pi}\frac{\si...

Given 01sint1+t\int_{0}^{1}\frac{\sin t}{1 + t}dt = a, find the value of4π24πsin(t/2)4π+2t\int_{4\pi - 2}^{4\pi}\frac{\sin(t/2)}{4\pi + 2 - t} in terms of a -

A

a

B

– a

C

2a

D

None of these

Answer

– a

Explanation

Solution

I = 4π24πsin(t/2)4π+2t\int_{4\pi - 2}^{4\pi}\frac{\sin(t/2)}{4\pi + 2 - t}dt

= (4p – (4p – 2)) 01sin((4π(4π2))t+4π22)4π+2((4π(4π2)t+4π2)\int_{0}^{1}\frac{\sin\left( \frac{(4\pi - (4\pi - 2))t + 4\pi - 2}{2} \right)}{4\pi + 2 - ((4\pi - (4\pi - 2)t + 4\pi - 2)}dt

= 2 01sin(t1)(42t)dt\int_{0}^{1}{\frac{\sin(t - 1)}{(4 - 2t)}dt}

= 01sin(t1)(2t)\int_{0}^{1}\frac{\sin(t - 1)}{(2 - t)}dt

= 01sin(1t1)2(1t)\int_{0}^{1}\frac{\sin(1 - t - 1)}{2 - (1 - t)} (By Prop. IV)

= 01sin(t)(1+t)\int_{0}^{1}\frac{\sin( - t)}{(1 + t)}dt

= – 01sint1+t\int_{0}^{1}\frac{\sin t}{1 + t}dt

= – a. (given).