Solveeit Logo

Question

Question: Given, \[\int {x.\dfrac{{\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {1 + {x^2}} }}} dx\] i...

Given, x.ln(x+1+x2)1+x2dx\int {x.\dfrac{{\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {1 + {x^2}} }}} dx is equal to
(1) 1+x2.ln(x+1+x2)x+c\left( 1 \right){\text{ }}\sqrt {1 + {x^2}} .\ln \left( {x + \sqrt {1 + {x^2}} } \right) - x + c
(2) x2.ln2(x+1+x2)x1+x2+c\left( 2 \right){\text{ }}\dfrac{x}{2}.{\ln ^2}\left( {x + \sqrt {1 + {x^2}} } \right) - \dfrac{x}{{\sqrt {1 + {x^2}} }} + c
(3) x2.ln2(x+1+x2)+x1+x2+c\left( 3 \right){\text{ }}\dfrac{x}{2}.{\ln ^2}\left( {x + \sqrt {1 + {x^2}} } \right) + \dfrac{x}{{\sqrt {1 + {x^2}} }} + c
(4) 1+x2.ln2(x+1+x2)+x+c\left( 4 \right){\text{ }}\sqrt {1 + {x^2}} .{\ln ^2}\left( {x + \sqrt {1 + {x^2}} } \right) + x + c

Explanation

Solution

Substitute x=tanθx = \tan \theta and dx=sec2θdθdx = {\sec ^2}\theta d\theta . Then simplify the expression and evaluate the integral by using formulas and values. The uvuv formula of integration is as uvdx=uvdx  u(vdx)dx\int {uvdx = u\int {vdx{\text{ }} - {\text{ }}\int {u'\left( {\int {vdx} } \right)} } } dx . By using this formula you can solve it further and get the desired result.

Complete step by step answer:
The given function is x.ln(x+1+x2)1+x2dx\int {x.\dfrac{{\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {1 + {x^2}} }}} dx ------- (i)
Let x=tanθx = \tan \theta . On differentiating it with respect to θ\theta we get dxdθ=sec2θ\dfrac{{dx}}{{d\theta }} = {\sec ^2}\theta . And from this the value of dx=sec2θdθdx = {\sec ^2}\theta d\theta
So the equation (i) becomes, tanθ.ln(tanθ+1+tan2θ)1+tan2θ.sec2θdθ\int {\tan \theta .\dfrac{{\ln \left( {\tan \theta + \sqrt {1 + {{\tan }^2}\theta } } \right)}}{{\sqrt {1 + {{\tan }^2}\theta } }}} .{\sec ^2}\theta d\theta ------- (ii)
We know that tan2θ+1=sec2θ{\tan ^2}\theta + 1 = {\sec ^2}\theta . Therefore we can write the equation (ii) as
tanθ.ln(tanθ+secθ)secθ.sec2θdθ\int {\tan \theta .\dfrac{{\ln \left( {\tan \theta + \sec \theta } \right)}}{{\sec \theta }}} .{\sec ^2}\theta d\theta
Now secθ\sec \theta will be cancelled out by secθ\sec \theta and we get
tanθ.ln(tanθ+secθ).secθdθ\int {\tan \theta .} \ln \left( {\tan \theta + \sec \theta } \right).\sec \theta d\theta
Or we can also write it as
ln(tanθ+secθ).secθtanθdθ\int {\ln \left( {\tan \theta + \sec \theta } \right).\sec \theta \tan \theta d\theta } ---------- (iii)
Let ln(tanθ+secθ)\ln \left( {\tan \theta + \sec \theta } \right) be the first function and secθtanθ\sec \theta \tan \theta be the second function. And we know that secθtanθdθ=secθ+c\int {\sec \theta \tan \theta d\theta = \sec \theta + c} . On applying uvuv formula of integration in equation (iii) we get,
ln(tanθ+secθ)×secθ  (1tanθ+secθ.(sec2θ+secθtanθ)×secθ)dθ\ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta {\text{ }} - {\text{ }}\int {\left( {\dfrac{1}{{\tan \theta + \sec \theta }}.\left( {{{\sec }^2}\theta + \sec \theta \tan \theta } \right) \times \sec \theta } \right)} d\theta
Take secθ\sec \theta common from (sec2θ+secθtanθ)\left( {{{\sec }^2}\theta + \sec \theta \tan \theta } \right)
ln(tanθ+secθ)×secθ  (secθ(secθ+tanθ)(tanθ+secθ)secθ)dθ\Rightarrow \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta {\text{ }} - {\text{ }}\int {\left( {\dfrac{{\sec \theta \left( {\sec \theta + \tan \theta } \right)}}{{\left( {\tan \theta + \sec \theta } \right)}}\sec \theta } \right)} d\theta
and cancel out tanθ+secθ\tan \theta + \sec \theta from numerator as well as from denominator
ln(tanθ+secθ)×secθ  sec2θdθ\Rightarrow \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta {\text{ }} - {\text{ }}\int {{{\sec }^2}\theta } d\theta
\because the value of sec2θdθ=tanθ+c\int {{{\sec }^2}\theta } d\theta = \tan \theta + c
ln(tanθ+secθ)×secθ tanθ+c\Rightarrow \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta {\text{ }} - \tan \theta + c
\because the value of tanθ\tan \theta is xx and the value of secθ\sec \theta is 1+x2\sqrt {1 + {x^2}}
ln(x+1+x2).1+x2 x+c\Rightarrow \ln \left( {x + \sqrt {1 + {x^2}} } \right){\text{.}}\sqrt {1 + {x^2}} {\text{ }} - x + c
We can also write it as
1+x2.ln(x+1+x2) x+c\Rightarrow \sqrt {1 + {x^2}} .\ln \left( {x + \sqrt {1 + {x^2}} } \right){\text{ }} - x + c

So, the correct answer is “Option 1”.

Note:
Remember that the value of sec2θ{\sec ^2}\theta is 1+x21 + {x^2} by which the value of secθ\sec \theta is 1+x2\sqrt {1 + {x^2}} . Also the value of tanθ\tan \theta is x x{\text{ }} . Also remember that tan2θ+1=sec2θ{\tan ^2}\theta + 1 = {\sec ^2}\theta and secθtanθdθ=secθ+c\int {\sec \theta \tan \theta d\theta = \sec \theta + c} .If you are facing any problem regarding integration in question and linear equations in the given options then there are two ways to get the answer:
First, simply go with the theory and think a formula by using trigonometric functions like here we have seen that 1+x21 + {x^2} is given which is related with tanx\tan x .So we have used tanx\tan x and secx\sec x , secx\sec x is a derivative of tanx\tan x . Therefore, by simply analyzing the questions pattern we can find the answer.
Second, And if you are good in derivative and poor in integration then differentiate each option and the type of equation you will get after differentiating is the expression given in the question then that option is the correct option.