Question
Question: Given \(\int\limits_{1}^{2}{{{e}^{{{x}^{2}}}}dx=a}\) , then the value of \(\int\limits_{e}^{{{e}^{4}...
Given 1∫2ex2dx=a , then the value of e∫e4logexdx is.
(a) e4−e
(b) e4−a
(c) 2e4−a
(d) 2e4−e−a
Explanation
Solution
Hint: For solving this question we will use integration by parts formula to do the integration and then we will try to evaluate the given integral correctly.
Complete step-by-step solution -
Given:
It is given that, 1∫2ex2dx=a and we have to find the value of e∫e4logexdx .
Now, let I=e∫e4logexdx and t=logex . Then,
t=logext2=logexet2=x2tet2dt=dx
And, when x=e then t=1 and when x=e4 then t=2 . Then,