Solveeit Logo

Question

Question: Given, \[\int\left\lbrack \dfrac{\text{cotxdx}}{\left\\{\sqrt\ (cos^{4}x+\ sin^{4}x) \ \right\\}} \r...

Given, \int\left\lbrack \dfrac{\text{cotxdx}}{\left\\{\sqrt\ (cos^{4}x+\ sin^{4}x) \ \right\\}} \right\rbrack = \ \\_\\_\\_\\_\\_\\_\\_\\_\\_\ + \ c\ \
(a) (12)logcot2x +   (cot4+1)\ \left( \dfrac{1}{2} \right)\log\left| cot^{2}x\ + \ \ {\sqrt\ (cot^{4} + 1}) \right|
(b)  (12)logcot2x +   (cot4+1)\ \left(- \dfrac{1}{2} \right)\log\left| cot^{2}x\ + \ \ {\sqrt\ (cot^{4} + 1}) \right|
(c) (12)logtan2x +   (tan4+1)\left( \dfrac{1}{2} \right)\log\left| tan^{2}x\ + \ \ {\sqrt\ (tan^{4} + 1}) \right|
(d)  (12)logcotx +   (cot4+1)\ \left( \dfrac{1}{2} \right)\log\left| cotx\ + \ \ {\sqrt\ (cot^{4} + 1}) \right|

Explanation

Solution

In this question, we need to integrate the given expression. Here we will use the basic trigonometric identities to solve this question . The symbol `\int’ is the sign of integration. The process of finding the integral is known as integration.
Formula used :
1 (x2+a2)dx=12log (x+ (x2+a2)dx )  +c\dfrac{1}{\sqrt\ {(x^{2}+a^{2})}}{dx}=\dfrac{1}{2}|log\ \left( x +{\sqrt\ {(x^{2}+a^{2})}}{dx} \ \right)|\ \ + c

Complete answer: Given,
\int\left\lbrack \dfrac{\text{cotxdx}}{\left\\{\sqrt\ (cos^{4}x+\ sin^{4}x)\right\\}} \right\rbrack
Let us consider this as I=\int\left\lbrack \dfrac{\text{cotxdx}}{\left\\{\sqrt\ (cos^{4}x+\ sin^{4}x)\right\\}} \right\rbrack
By taking sin4xsin^4x as common from the denominator,
We get,
I=\int\left\lbrack \dfrac{\text{cotxdx}}{\left\\{\sqrt\ (sin^{4}x (\dfrac{{cos^{4}x}}{{sin^{4}x}}\ )+1)\right\\}}\right\rbrack
On taking sin⁴x outside the square root,
I = \int\left\lbrack \dfrac{\text{cotx dx}}{\left\\{ sin^{2}x {\left\\{\sqrt\ ((\dfrac{{cos^{4}x}}{sin^{4}x}\ )+1) \right\\}}\right\\}} \right\rbrack
We know that cosxsinx=cotx\dfrac{{cosx}}{{sinx}} = cotx
From this we can write,
cos4xsin4x =cot4x\dfrac{{cos}^{4}x}{{sin}^{4}x}\ = cot^{4}x
I = \int\left\lbrack \dfrac{\text{cotx dx}}{\left\\{ sin^{2}x {\left\\{\sqrt\ {(cot^{4}+1) }\right\\}}\right\\}} \right\rbrack
Now, we also know that 1sinx=cosecx\dfrac{1}{{sinx}} = cosecx
On squaring both sides,
We get,
1sin2x=cosec2x\dfrac{1}{{sin}^{2}x} = cosec^{2}x
By substituting this,
We get,
I = \int\left\lbrack \dfrac{{cotx\ cosec}^{2}{x\ dx}}{\left\\{\\{\sqrt\ {(cot^{4}+1) } \right\\}} \right\rbrack (1)
Now, we can take cotx=tcotx = t
On differentiating both sides,
We get,
2cotx cosec2x dx =dt- 2cotx\ cosec^{2}x\ dx\ = dt
cotxcosec2x dx=12dt{cotx cosec}^{2}x\ dx = - \dfrac{1}{2}{dt}
By substituting this value in (1)
I=(121 (t2+1)dt)I = \int\left( - \dfrac{1}{2}\dfrac{1}{\sqrt\ {(t^{2}+1)}}{dt} \right)
On integrating both sides,
We get,
I=12log (t+ (t2+1)dt )  +cI = - \dfrac{1}{2}|log\ \left( t +{\sqrt\ {(t^{2}+1)}}{dt} \ \right)|\ \ + c
Now can substitute cotxcotx in the place of tt,
We get,
I = - \dfrac{1}{2}\log\ \left| \cot^{2}x +{\sqrt\\{{((cot^{2}x}})^{2}+1)\right| + c
On simplifying,
We get,
I = \ \left(- \dfrac{1}{2} \right)\log\left| cotx\ + {\sqrt\\{(cot^{4}}x+1)\right| + c
Final answer :
\int\left\lbrack \dfrac{\text{cotxdx}}{\left\\{\sqrt\ (cos^{4}x+\ sin^{4}x) \ \right\\}} \right\rbrack =\ \left(- \dfrac{1}{2} \right)\log\left| cotx\ + {\sqrt\\{(cot^{4}}x+1)\right| + c
Option B).  (12)logcot2x +   (cot4+1)\ \left(- \dfrac{1}{2} \right)\log\left| cot^{2}x\ + \ \ {\sqrt\ (cot^{4} + 1}) \right|

Note:
The concept used in this question is integration method, that is integration by substitution . Since this is an indefinite integral we have to add an arbitrary constant ‘cc’. cc is called the constant of integration. The variable xx in dxdx is known as the variable of integration or integrator.