Solveeit Logo

Question

Question: Given, \[\int{\dfrac{x}{{{\left( 1+x \right)}^{\dfrac{3}{2}}}}}dx=\] A) \[2\left[ \dfrac{2+x}{\sqr...

Given, x(1+x)32dx=\int{\dfrac{x}{{{\left( 1+x \right)}^{\dfrac{3}{2}}}}}dx=
A) 2[2+x1+x]+c2\left[ \dfrac{2+x}{\sqrt{1+x}} \right]+c
B) [2+x1+x]+c\left[ \dfrac{2+x}{\sqrt{1+x}} \right]+c
C) 32[x1x]+c\dfrac{3}{2}\left[ \dfrac{x}{\sqrt{1-x}} \right]+c
D) 32[2+x1+x]+c\dfrac{3}{2}\left[ \dfrac{2+x}{\sqrt{1+x}} \right]+c

Explanation

Solution

In this problem we need to find an integral solution of the expression is given x(1+x)32\dfrac{x}{{{\left( 1+x \right)}^{\dfrac{3}{2}}}}with respect to x, we have to consider the variable to simplify the problem that is 1+x=t1+x=tthen after differentiating with respect to x we get dx=dtdx=dtsubstitute this values in expression of integral and by further applying the basic integral formula like xndx=xn+1n+1\int{{{x}^{n}}}\,dx=\dfrac{{{x}^{n+1}}}{n+1}we get the integral solution of the given expression.

Complete step by step answer:
In this problem, we need to find an integral solution of the given expression that is x(1+x)32\dfrac{x}{{{\left( 1+x \right)}^{\dfrac{3}{2}}}}that is
x(1+x)32dx(1)\int{\dfrac{x}{{{\left( 1+x \right)}^{\dfrac{3}{2}}}}}dx---(1)
We have to consider 1+x=t1+x=t
After rearranging the term we get x=t1x=t-1
We have to differentiate with respect to x then we get:
dx=dtdx=dt
After substituting the all the values of x in the given expression that is x(1+x)32\dfrac{x}{{{\left( 1+x \right)}^{\dfrac{3}{2}}}}
After substituting we get:
x(1+x)32=t1(t)32\dfrac{x}{{{\left( 1+x \right)}^{\dfrac{3}{2}}}}=\dfrac{t-1}{{{\left( t \right)}^{\dfrac{3}{2}}}}
After splitting the terms we get:
x(1+x)32=t(t)321(t)32\dfrac{x}{{{\left( 1+x \right)}^{\dfrac{3}{2}}}}=\dfrac{t}{{{\left( t \right)}^{\dfrac{3}{2}}}}-\dfrac{1}{{{\left( t \right)}^{\dfrac{3}{2}}}}
Simplifying the above equation we get:
x(1+x)32=t×(t)32(t)32\dfrac{x}{{{\left( 1+x \right)}^{\dfrac{3}{2}}}}=t\times {{\left( t \right)}^{\dfrac{-3}{2}}}-{{\left( t \right)}^{\dfrac{-3}{2}}}
By using the property of indices we have am×an=am+n{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} substitute this property in thin above equation we get:
x(1+x)32=(t)132(t)32\dfrac{x}{{{\left( 1+x \right)}^{\dfrac{3}{2}}}}={{\left( t \right)}^{1-\dfrac{3}{2}}}-{{\left( t \right)}^{\dfrac{-3}{2}}}
Further simplifying this we get:
x(1+x)32=(t)12(t)32(2)\dfrac{x}{{{\left( 1+x \right)}^{\dfrac{3}{2}}}}={{\left( t \right)}^{\dfrac{-1}{2}}}-{{\left( t \right)}^{\dfrac{-3}{2}}}---(2)
Substitute this value of equation (2) on equation (1) we get:
[(t)12(t)32]dt\Rightarrow \int{\left[ {{\left( t \right)}^{\dfrac{-1}{2}}}-{{\left( t \right)}^{\dfrac{-3}{2}}} \right]\,}dt
By applying the basic rule of integration that is xndx=xn+1n+1\int{{{x}^{n}}}\,dx=\dfrac{{{x}^{n+1}}}{n+1}applying this formula on above equation we get:
[(t)12+112+1(t)32+132+1]\Rightarrow \left[ \dfrac{{{\left( t \right)}^{\dfrac{-1}{2}+1}}}{\dfrac{-1}{2}+1}-\dfrac{{{\left( t \right)}^{\dfrac{-3}{2}+1}}}{\dfrac{-3}{2}+1} \right]\,
By further simplifying this we get:
[(t)1212(t)1212]\Rightarrow \left[ \dfrac{{{\left( t \right)}^{\dfrac{1}{2}}}}{\dfrac{1}{2}}-\dfrac{{{\left( t \right)}^{\dfrac{-1}{2}}}}{\dfrac{-1}{2}} \right]\,
After simplifying further we get:
[2(t)+2(t)]\Rightarrow \left[ 2\sqrt{\left( t \right)}+\dfrac{2}{\sqrt{\left( t \right)}} \right]\,
By cross multiplying this above equation we get:
[2(t)+2(t)]\Rightarrow \left[ \dfrac{2\left( t \right)+2}{\sqrt{\left( t \right)}} \right]\,
By resubstituting the value of t that is 1+x=t1+x=t in the above equation we get:
[2(1+x)+21+x]\Rightarrow \left[ \dfrac{2\left( 1+x \right)+2}{\sqrt{1+x}} \right]\,
By further solving this and adding the terms we get:
[4+2x1+x]\Rightarrow \left[ \dfrac{4+2x}{\sqrt{1+x}} \right]\,
Take the 2 common things we get:
2[2+x1+x]\Rightarrow 2\left[ \dfrac{2+x}{\sqrt{1+x}} \right]\,

So, the correct answer is “Option A”.

Note:
Always remember the important formulas for differentiation as well as integration. If not then the question becomes more difficult. In this problem we have assign the value of t\,t is 1+x=t1+x=t but it is not mandatory you can assign any variable to make the problem easier and at last step don’t forget to substitute in the value of t\,t in the term of x. In this type of problem always first you simplify the problem and reduce it before integrating the expression otherwise integration becomes complicated.