Solveeit Logo

Question

Question: Given if \[\sin y=x\sin \left( a+y \right)\], prove the result \(\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}...

Given if siny=xsin(a+y)\sin y=x\sin \left( a+y \right), prove the result dydx=sin2(a+y)sina\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin a}.

Explanation

Solution

We start solving the problem by finding the value of from the given equation of the problem siny=xsin(a+y)\sin y=x\sin \left( a+y \right). We use the uv\dfrac{u}{v} rule of differentiation to differentiate x with respect to y. We use the results of differentiation and the result of sin(AB)\sin \left( A-B \right), to get the value of dxdy\dfrac{dx}{dy}. Now, we take the inverse to get the required result.

Complete step by step answer:
Given that we have siny=xsin(a+y)\sin y=x\sin \left( a+y \right) and we need to prove the result dydx=sin2(a+y)sina\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin a}.
We have got the value siny=xsin(a+y)\sin y=x\sin \left( a+y \right).
We have got the value x=sinysin(a+y)x=\dfrac{\sin y}{\sin \left( a+y \right)}.
Let us differentiate this equation on both sides.
We have got the value dxdy=ddy(sinysin(a+y))\dfrac{dx}{dy}=\dfrac{d}{dy}\left( \dfrac{\sin y}{\sin \left( a+y \right)} \right) ---(1).
We know that differentiation of a function uv\dfrac{u}{v} is defined as ddx(uv)=vdudxudvdxv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}. We use this result in equation (1).
We have got the value dxdy=((sin(a+y)×ddy(siny))(siny×ddy(sin(a+y)))sin2(a+y))\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \dfrac{d}{dy}\left( \sin y \right) \right)-\left( \sin y\times \dfrac{d}{dy}\left( \sin \left( a+y \right) \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right) ---(2).
We know that ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x and ddx(sin(f(x)))=cos(f(x))×ddx(f(x))\dfrac{d}{dx}\left( \sin \left( f\left( x \right) \right) \right)=\cos \left( f\left( x \right) \right)\times \dfrac{d}{dx}\left( f\left( x \right) \right). We use this result in equation (2).
We have got the value dxdy=((sin(a+y)×cosy)(siny×(cos(a+y)×d(a+y)dy))sin2(a+y))\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \left( \cos \left( a+y \right)\times \dfrac{d\left( a+y \right)}{dy} \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right).
We have got the value dxdy=((sin(a+y)×cosy)(siny×(cos(a+y)×1))sin2(a+y))\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \left( \cos \left( a+y \right)\times 1 \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right).
We have got the value dxdy=((sin(a+y)×cosy)(siny×cos(a+y))sin2(a+y))\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \cos \left( a+y \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right) ---(3).
We know that sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B. We use this result in equation (3).
We have got the value dxdy=(sin(a+yy)sin2(a+y))\dfrac{dx}{dy}=\left( \dfrac{\sin \left( a+y-y \right)}{{{\sin }^{2}}\left( a+y \right)} \right).
We have got the value dxdy=(sin(a)sin2(a+y))\dfrac{dx}{dy}=\left( \dfrac{\sin \left( a \right)}{{{\sin }^{2}}\left( a+y \right)} \right) ---(4).
We know that if dydx=a\dfrac{dy}{dx}=a, then dxdy=1a\dfrac{dx}{dy}=\dfrac{1}{a}. We use this result in equation (4).
We have got the value dydx=sin2(a+y)sin(a)\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}.
We have found the value of dydx\dfrac{dy}{dx} as sin2(a+y)sin(a)\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}.

∴ We have proved the result dydx=sin2(a+y)sin(a)\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}.

Note: We should not make mistakes while differentiating using uv\dfrac{u}{v} rule. We should not forget that we can use inverse after differentiation also. Because sometimes finding dydx\dfrac{dy}{dx} directly will be tough when compared to finding dxdy\dfrac{dx}{dy}.