Solveeit Logo

Question

Question: Given f(x) = 4 –\(\left( \frac{1}{2} - x \right)^{3/2}\); (x) = \(\left\{ \begin{matrix} \frac{\tan...

Given f(x) = 4 –(12x)3/2\left( \frac{1}{2} - x \right)^{3/2};

(x) = {tan[x]x;x01;x=0 \left\{ \begin{matrix} \frac{\tan\lbrack x\rbrack}{x}; & x \neq 0 \\ 1; & x = 0 \end{matrix} \right.\ ; h(x) = {x}, k (x) = 5log2(x+3)5^{\log_{2}(x + 3)},

Then in [0, 1] Langranges Mean value theorem is NOT applicable to:

A

f, g, h

B

h, k

C

f, g

D

g, h, k

where [x] & {x} denotes G.I.F. and fractional part function respectively.

Answer

f, g, h

Explanation

Solution

f, g, h are not continuous function in [0, 1]