Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

Given function f(x)=(e2x1e2x+1)f(x)=\left(\frac{e^{2 x}-1}{e^{2 x}+1}\right) is.

A

increasing

B

decreasing

C

even

D

none of these

Answer

increasing

Explanation

Solution

f(x)=e2x1e2x+1f(x)=\frac{e^{2 x}-1}{e^{2 x}+1}
f(x)=[e2x+1][2e2x][e2x1][2e2x][e2x+1]2f(x)=\frac{\left[e^{2 x}+1\right]\left[2 e^{2 x}\right]-\left[e^{2 x}-1\right]\left[2 e^{2 x}\right]}{\left[e^{2 x}+1\right]^{2}}
f1(x)=2e2x[e2x+1e2x+1][e2x+1]2f ^{1}( x )=\frac{2 e ^{2 x }\left[ e ^{2 x }+1- e ^{2 x }+1\right]}{\left[ e ^{2 x }+1\right]^{2}}
f1(x)=4e2x[e2x+1]2f ^{1}( x )=\frac{4 e ^{2 x }}{\left[ e ^{2 x }+1\right]^{2}}
Now, [e2x+1]2>0\left[ e ^{2 x }+1\right]^{2}>0 and e2x>0e ^{2 x }>0
f1(x)>0\therefore f ^{1}( x )>0
f(x)\therefore f(x) is increasing function.