Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

Given b+c11=c+a12=a+b13\frac{b+c}{11} = \frac{c+a}{12}= \frac{a+b}{13} for a ΔABC \Delta ABC with usual notation. If cosAα=cosBβ=cosCγ\frac{\cos A}{\alpha} = \frac{\cos B}{\beta} = \frac{\cos C}{\gamma} , then the ordered triad (α,β,γ)( \alpha, \beta, \gamma) has a value :

A

(3, 4, 5)

B

(19, 7, 25)

C

(7, 19, 25)

D

(5, 12, 13)

Answer

(7, 19, 25)

Explanation

Solution

b+c=11λ,c+a=12λ,a+b=13λb + c = 11 \lambda , c + a = 12 \lambda, a + b = 13 \lambda
  a=7λ,b=6λ,c=5λ\Rightarrow \; a = 7 \lambda , b = 6 \lambda , c = 5\lambda
(using cosine formula)
cosA=15,cosB=1935,cosC=57\cos A =\frac{1}{5} , \cos B = \frac{19}{35} , \cos C = \frac{5}{7}
α:β:γ7:19:25\alpha: \beta:\gamma \Rightarrow 7 : 19 : 25