Solveeit Logo

Question

Question: Given \(f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ and\ g\left( x \right)=\dfrac{3x+{{x...

Given f(x)=log(1+x1x) and g(x)=3x+x31+3x2,fog(x)f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}},fog\left( x \right)equals
A. f(x)-f\left( x \right)
B. 3f(x)3f\left( x \right)
C. [f(x)]3{{\left[ f\left( x \right) \right]}^{3}}
D. None of these

Explanation

Solution

Hint: First of all, to find fg(x)fg\left( x \right), substitute x=g(x)x=g\left( x \right) in f(x)f\left( x \right) that it fg(x)=log1+g(x)1g(x)fg\left( x \right)=\log \dfrac{1+g\left( x \right)}{1-g\left( x \right)}. Then here put the value of g(x)=3x+x31+3x2g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} and simplifying the equation. Finally, find fg(x)fg\left( x \right)in terms of f(x)f\left( x \right).

Complete step-by-step answer:
Here we are given that f(x)=log(1+x1x) and g(x)=3x+x31+3x2f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}. We have to find the value of fog(x)fog\left( x \right).
Let us first take our given functions that are,
f(x)=log(1+x1x)  and g(x)=3x+x31+3x2 \begin{aligned} & f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ \\\ & and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \\\ \end{aligned}
Here we have to find the value of fog(x)fog\left( x \right)or f(g(x))f\left( g\left( x \right) \right).
To find the value of f(g(x))f\left( g\left( x \right) \right), we will have to substitute x=g(x)x=g\left( x \right)in expression of f(x)f\left( x \right).
So by substituting the value of x=g(x)x=g\left( x \right)in expression of f(x)f\left( x \right), we get,
fg(x)=log[1+g(x)1g(x)]fg\left( x \right)=\log \left[ \dfrac{1+g\left( x \right)}{1-g\left( x \right)} \right]……………… (1)
As we are given that g(x)=3x+x31+3x2g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}, by substituting the value of g(x)g\left( x \right)in equation (1), we get,
fg(x)=log[1+(3x+x31+3x2)1(3x+x31+3x2)]fg\left( x \right)=\log \left[ \dfrac{1+\left( \dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)}{1-\left( \dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)} \right]
By simplifying the above equation, we get,
fg(x)=log[(1+3x2)+(3x+x3)(1+3x2)(1+3x2)(3x+x3)(1+3x2)]fg\left( x \right)=\log \left[ \dfrac{\dfrac{\left( 1+3{{x}^{2}} \right)+\left( 3x+{{x}^{3}} \right)}{\left( 1+3{{x}^{2}} \right)}}{\dfrac{\left( 1+3{{x}^{2}} \right)-\left( 3x+{{x}^{3}} \right)}{\left( 1+3{{x}^{2}} \right)}} \right]
By cancelling the like terms, we get,
fg(x)=log[1+3x2+3x+x31+3x23x+x3]fg\left( x \right)=\log \left[ \dfrac{1+3{{x}^{2}}+3x+{{x}^{3}}}{1+3{{x}^{2}}-3x+{{x}^{3}}} \right]
We can also write the above equation as,
fg(x)=log[(1)3+(x)3+3x(1+x)(1)3(x)33x(1x)]fg\left( x \right)=\log \left[ \dfrac{{{\left( 1 \right)}^{3}}+{{\left( x \right)}^{3}}+3x\left( 1+x \right)}{{{\left( 1 \right)}^{3}}-{{\left( x \right)}^{3}}-3x\left( 1-x \right)} \right]
We know that, (a+b)3=a3+b3+3ab(a+b)and (ab)3=a3b33ab(ab){{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)and\ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right). Applying these in above equation by taking a = 1 and b = x, we get,
fg(x)=log[(1+x)3(1x)3]fg\left( x \right)=\log \left[ \dfrac{{{\left( 1+x \right)}^{3}}}{{{\left( 1-x \right)}^{3}}} \right]
We know that anbn=(ab)n\dfrac{{{a}^{n}}}{{{b}^{n}}}={{\left( \dfrac{a}{b} \right)}^{n}}. By applying this in above equation, we get,
fg(x)=log[(1+x1x)3]fg\left( x \right)=\log \left[ {{\left( \dfrac{1+x}{1-x} \right)}^{3}} \right]
We know that logam=mloga\log {{a}^{m}}=m\log a. By applying this in above equation, we get,
fg(x)=3log(1+x1x)fg\left( x \right)=3\log \left( \dfrac{1+x}{1-x} \right)
As we are given that log(1+x1x)=f(x)\log \left( \dfrac{1+x}{1-x} \right)=f\left( x \right), by substituting the value in above equation, we get,
fg(x)=3f(x)fg\left( x \right)=3f\left( x \right)
Therefore we get fg(x) or fog(x) as 3f(x)fg\left( x \right)\ or\ fog\left( x \right)\ as\ 3f\left( x \right).
Hence option (B) is correct.

Note: Students often confuse between fog(x) and gof(x)fog\left( x \right)\ and\ gof\left( x \right) and some students even consider them as the same functions. But actually they are different functions. fog(x) or fg(x)fog\left( x \right)\ or\ fg\left( x \right)means, we have to put x=g(x)x=g\left( x \right) in expression of f(x)f\left( x \right) whereas gof(x) and gf(x)gof\left( x \right)\ and\ gf\left( x \right)means, we have to put x=f(x)x=f\left( x \right) in expression of g(x)g\left( x \right). In some cases, by completely solving fg(x) and gf(x)fg\left( x \right)\ and\ gf\left( x \right), they may come out to be the same, but generally they are different functions. Also if fg(x) =gf(x)fg\left( x \right)\ =gf\left( x \right)then we can conclude that f(x)f\left( x \right)and g(x)g\left( x \right)are inverse of each other.