Solveeit Logo

Question

Question: Given \[f'\left( x \right) = \dfrac{{\cos x}}{x}\], \[f\left( {\dfrac{\pi }{2}} \right) = a\], and \...

Given f(x)=cosxxf'\left( x \right) = \dfrac{{\cos x}}{x}, f(π2)=af\left( {\dfrac{\pi }{2}} \right) = a, and f(3π2)=bf\left( {\dfrac{{3\pi }}{2}} \right) = b, find the value of π/23π/2f(x)dx\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx.

Explanation

Solution

Here, we need to find the value of the definite integral. We will integrate the given function by parts. Then, we will simplify the expression using the given values. We will again substitute the limits into the expressions and simplify the expression to obtain the required value of the integral.
Formula Used: Using integration by parts, the integral of the product of two differentiable functions of xx can be written as uvdx=uvdx(d(u)dx×vdx)dx\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} , where uu and vv are the differentiable functions of xx.

Complete step by step solution:
We will integrate the given definite integral using integration by parts.
Using integration by parts, the integral of the product of two differentiable functions of xx can be written as uvdx=uvdx(d(u)dx×vdx)dx\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} , where uu and vv are the differentiable functions of xx.
Rewriting the given integral, we get
π/23π/2f(x)dx=π/23π/2f(x)×1dx\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right) \times 1} dx
Let uu be f(x)f\left( x \right) and vv be 11.
Therefore, by integrating π/23π/2f(x)dx\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx by parts, we get
π/23π/2f(x)×1dx=[f(x)(1)dx(d(f(x))dx×(1)dx)dx]π/23π/2 π/23π/2f(x)dx=[f(x)(1)dx(d(f(x))dx×(1)dx)dx]π/23π/2\begin{array}{l}\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} \times 1dx = \left. {\left[ {f\left( x \right)\int {\left( 1 \right)} dx - \int {\left( {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \times \int {\left( 1 \right)} dx} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)\int {\left( 1 \right)} dx - \int {\left( {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \times \int {\left( 1 \right)} dx} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\end{array}
We know that the derivative of the function f(x)f\left( x \right) is f(x)f'\left( x \right).
Also, we know that the integral of a constant (1)dx\int {\left( 1 \right)} dx is xx.
Therefore, we can simplify the integral as
π/23π/2f(x)dx=[f(x)x(f(x)×x)dx]π/23π/2\Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)x - \int {\left( {f'\left( x \right) \times x} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}
Substitute f(x)=cosxxf'\left( x \right) = \dfrac{{\cos x}}{x} in the expression, we get
π/23π/2f(x)dx=[f(x)x(cosxx×x)dx]π/23π/2 π/23π/2f(x)dx=[xf(x)cosxdx]π/23π/2\begin{array}{l} \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)x - \int {\left( {\dfrac{{\cos x}}{x} \times x} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {xf\left( x \right) - \int {\cos x} dx} \right]} \right|_{\pi /2}^{3\pi /2}\end{array}
Integrating the function cosx\cos x, we get
π/23π/2f(x)dx=[xf(x)sinx]π/23π/2\Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {xf\left( x \right) - \sin x} \right]} \right|_{\pi /2}^{3\pi /2}
Now, we will substitute the limits into the expressions.
Therefore, we get
π/23π/2f(x)dx=(3π2f(3π2)sin3π2)(π2f(π2)sinπ2)\Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \sin \dfrac{{3\pi }}{2}} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - \sin \dfrac{\pi }{2}} \right)
We know that sinπ2=1\sin \dfrac{\pi }{2} = 1 and sin3π2=1\sin \dfrac{{3\pi }}{2} = - 1.
Thus, the integral becomes
π/23π/2f(x)dx=(3π2f(3π2)(1))(π2f(π2)1) π/23π/2f(x)dx=(3π2f(3π2)+1)(π2f(π2)1) π/23π/2f(x)dx=3π2f(3π2)+1π2f(π2)+1 π/23π/2f(x)dx=3π2f(3π2)π2f(π2)+2\begin{array}{l} \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \left( { - 1} \right)} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - 1} \right)\\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) + 1} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - 1} \right)\\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) + 1 - \dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) + 1\\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) + 2\end{array}
Substituting f(π2)=af\left( {\dfrac{\pi }{2}} \right) = a and f(3π2)=bf\left( {\dfrac{{3\pi }}{2}} \right) = b, we get
π/23π/2f(x)dx=3π2bπ2a+2\Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}b - \dfrac{\pi }{2}a + 2
Taking π2\dfrac{\pi }{2} common, we get
π/23π/2f(x)dx=π2(3ba)+2\therefore \int\limits_{\pi /2}^{3\pi /2}{f\left( x \right)}dx=\dfrac{\pi }{2}\left( 3b-a \right)+2

Therefore, the value of the definite integral π/23π/2f(x)dx\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx is π2(3ba)+2\dfrac{\pi }{2}\left( {3b - a} \right) + 2.

Note:
We have used integration by parts to simplify the integral π/23π/2f(x)dx\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx. A common mistake we can make is to first integrate f(x)=cosxxf'\left( x \right) = \dfrac{{\cos x}}{x} to find f(x)f\left( x \right), and then substitute it into the integral π/23π/2f(x)dx\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx. We will avoid doing this because f(x)=cosxxf'\left( x \right) = \dfrac{{\cos x}}{x} cannot be integrated using any elementary functions (it can be integrated in terms of infinite series, using Taylor series expansion of cosx\cos x).