Solveeit Logo

Question

Question: Given \[f\left( x \right) = 12{x^2} + x - 2\] , how do you find the axis of symmetry, vertex, max or...

Given f(x)=12x2+x2f\left( x \right) = 12{x^2} + x - 2 , how do you find the axis of symmetry, vertex, max or min, y-intercept, end behaviour, domain range?

Explanation

Solution

Hint : The given function is of the form, ax2+bx+ca{x^2} + bx + c , hence to determine axis of symmetry, apply the vertex formula xvertex=b2a{x_{vertex}} = - \dfrac{b}{{2a}} and then to find the vertex substitute the value of xvertex{x_{vertex}} in the given function and to find max or min we must consider the value of a, to find the y-intercept substitute x=0x = 0 and solve for y.
Formula used:
xvertex=b2a{x_{vertex}} = - \dfrac{b}{{2a}} ,
from the Quadratic equation (ax2+bx+c)\left( {a{x^2} + bx + c} \right) .

Complete step by step solution:
Let us write the given function:
f(x)=12x2+x2f\left( x \right) = 12{x^2} + x - 2 …………………………. 1
To determine axis of symmetry \to vertex
Given, function f(x)=12x2+x2f\left( x \right) = 12{x^2} + x - 2 is of the form ax2+bx+ca{x^2} + bx + c , and hence, to find the axis of symmetry we have a=12a = 12 , b=1b = 1 , c=2c = - 2 , hence we get:
xvertex=b2a{x_{vertex}} = - \dfrac{b}{{2a}}
Substitute the value of a and b from the given function as:
xvertex=12(12){x_{vertex}} = - \dfrac{1}{{2\left( {12} \right)}}
xvertex=124\Rightarrow {x_{vertex}} = - \dfrac{1}{{24}}
Therefore, the axis of symmetry x=124 \to x = - \dfrac{1}{{24}}
Now, we need to determine Vertex
Hence, substitute x=124x = - \dfrac{1}{{24}} in the given function of equation 1 as:
yvertex=12x2+x2{y_{vertex}} = 12{x^2} + x - 2
yvertex=12(124)2+(124)2{y_{vertex}} = 12{\left( { - \dfrac{1}{{24}}} \right)^2} + \left( { - \dfrac{1}{{24}}} \right) - 2
Simplify the terms, we get:
yvertex=12(1576)1242{y_{vertex}} = 12\left( {\dfrac{1}{{576}}} \right) - \dfrac{1}{{24}} - 2
Now, take out the LCM of 576, 24 and 1 as:
yvertex=1257612421{y_{vertex}} = \dfrac{{12}}{{576}} - \dfrac{1}{{24}} - \dfrac{2}{1}
Hence, we get LCM as 576, as the GCF is 576; therefore, simplifying the terms we get:
yvertex=12(1)5761(24)242(576)1{y_{vertex}} = \dfrac{{12\left( 1 \right)}}{{576}} - \dfrac{{1\left( {24} \right)}}{{24}} - \dfrac{{2\left( {576} \right)}}{1}
yvertex=12241152576\Rightarrow {y_{vertex}} = \dfrac{{12 - 24 - 1152}}{{576}}
Evaluating the numerator terms, we get:
yvertex=1164576\Rightarrow {y_{vertex}} = - \dfrac{{1164}}{{576}}
yvertex=9748or2148\Rightarrow {y_{vertex}} = - \dfrac{{97}}{{48}}or - 2\dfrac{1}{{48}}
Therefore, the vertex (x,y)=(124,9748) \to \left( {x,y} \right) = \left( { - \dfrac{1}{{24}}, - \dfrac{{97}}{{48}}} \right)
To determine if max or min:
\to Here, in the given quadratic equation, the coefficient of x2{x^2} is positive, thus the vertex occurs at a minimum; i.e., if a>0a > 0 , it is a minimum functional value of f.
To determine the y intercept:
\to Substitute x=0x = 0 , to get y-intercept i.e.,
f(x)=12x2+x2f\left( x \right) = 12{x^2} + x - 2 , hence
yintercept=12(0)+02{y_{\operatorname{int} ercept}} = 12\left( 0 \right) + 0 - 2
yintercept=2{y_{\operatorname{int} ercept}} = - 2 ; directly as from the given function f(x)f\left( x \right) .
To determine end behaviour:
\to As x goes on increasing 12x212{x^2} considerably increases than the rest. As this state grows further the +x2 + x - 2 become insignificant. Thus, we are looking at:
limx±y=limx±12x212(±)±\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } 12{x^2} \to 12\left( { \pm \infty } \right) \to \pm \infty
To determine domain and range:
\to Range is output: f(x)[9748,)f\left( x \right) \to \left[ { - \dfrac{{97}}{{48}},\infty } \right)
\to Domain is input of f\left( x \right) \to \left\\{ {x:x \in R,x \in \left( { - \infty , + \infty } \right)} \right\\}

Note : We must note that to find maximum or minimum: if a>0a > 0 , it is a minimum functional value of function and if a<0a < 0 , it is a maximum functional value of function. We must know that the domain of a function f(x)f\left( x \right) is the set of all values for which the function is defined, and the range of the function is the set of all values that f takes.