Solveeit Logo

Question

Question: Given \(\csc x=8\); how do you find \(\sin \dfrac{x}{2}\) , \(\cos \dfrac{x}{2}\),\(\tan \dfrac{x}{2...

Given cscx=8\csc x=8; how do you find sinx2\sin \dfrac{x}{2} , cosx2\cos \dfrac{x}{2},tanx2\tan \dfrac{x}{2}?
(a) Using trigonometric identities
(b) Using triangles
(c) Using linear formulas
(d) All of them

Explanation

Solution

We are to find the value of sinx2\sin \dfrac{x}{2} , cosx2\cos \dfrac{x}{2},tanx2\tan \dfrac{x}{2}where we were given cscx=8\csc x=8. Now, if we also know cosx=1sin2x\cos x=\sqrt{1-{{\sin }^{2}}x}, we will initially find cos x. Then we will use the formula of cosx=2cos2x21\cos x=2{{\cos }^{2}}\dfrac{x}{2}-1and sin2x2=12(1cosx){{\sin }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1-\cos x \right), to get the value of sinx2\sin \dfrac{x}{2} , cosx2\cos \dfrac{x}{2}. Then using the value of tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} , we also get the value of tanx2\tan \dfrac{x}{2}.

Complete step by step solution:
We will start with,
cscx=8\csc x=8;
We also know,sinx=1cscx=18\sin x=\dfrac{1}{\csc x}=\dfrac{1}{8} ,
So, sinx=18\sin x=\dfrac{1}{8},
And as, sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 , we have, cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x
So, cosx=1sin2x\cos x=\sqrt{1-{{\sin }^{2}}x}
Putting the value of sin x we get,
cosx=1(18)2\cos x=\sqrt{1-{{\left( \dfrac{1}{8} \right)}^{2}}}
Simplifying,
cosx=1164=6364\cos x=\sqrt{1-\dfrac{1}{64}}=\sqrt{\dfrac{63}{64}}
So, cosx=±638\cos x=\pm \dfrac{\sqrt{63}}{8}
On the other hand, we also know, sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2} and cosx=2cos2x21\cos x=2{{\cos }^{2}}\dfrac{x}{2}-1 , using the trigonometric identities.
We have, cosx=2cos2x21\cos x=2{{\cos }^{2}}\dfrac{x}{2}-1,
cos2x2=12(1+cosx)\Rightarrow {{\cos }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1+\cos x \right)
Now, putting the value, cosx=±638\cos x=\pm \dfrac{\sqrt{63}}{8},
cos2x2=12(1±638)\Rightarrow {{\cos }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1\pm \dfrac{\sqrt{63}}{8} \right)
So, we are getting two values, cos2x2=(8±6316){{\cos }^{2}}\dfrac{x}{2}=\left( \dfrac{8\pm \sqrt{63}}{16} \right).
Hence,
cosx2=8±6316\cos \dfrac{x}{2}=\sqrt{\dfrac{8\pm \sqrt{63}}{16}}
More simplifying,
cosx2=8±374=12(32±14)\cos \dfrac{x}{2}=\dfrac{\sqrt{8\pm 3\sqrt{7}}}{4}=\dfrac{1}{2}\left( 3\sqrt{2}\pm \sqrt{14} \right)
Again, we also know, cosx=12sin2x2\cos x=1-2{{\sin }^{2}}\dfrac{x}{2},
Then, sin2x2=12(1cosx){{\sin }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1-\cos x \right),
Now, putting the value, cosx=±638\cos x=\pm \dfrac{\sqrt{63}}{8},
sin2x2=12(1638)\Rightarrow {{\sin }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1\mp \dfrac{\sqrt{63}}{8} \right)
So, we are getting two values, sin2x2=(86316){{\sin }^{2}}\dfrac{x}{2}=\left( \dfrac{8\mp \sqrt{63}}{16} \right).
Hence,
sinx2=86316\sin \dfrac{x}{2}=\sqrt{\dfrac{8\mp \sqrt{63}}{16}}
More simplifying,
sinx2=8374=12(3214)\sin \dfrac{x}{2}=\dfrac{\sqrt{8\mp 3\sqrt{7}}}{4}=\dfrac{1}{2}\left( 3\sqrt{2}\mp \sqrt{14} \right)
So, if cosx2=12(32+14)\cos \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right) and sinx2=12(3214)\sin \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right)and tanx2=12(3214)12(32+14)\tan \dfrac{x}{2}=\dfrac{\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right)}{\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right)}
Thus, tanx2=321432+14=(3214)2(32)2(14)2\tan \dfrac{x}{2}=\dfrac{3\sqrt{2}-\sqrt{14}}{3\sqrt{2}+\sqrt{14}}=\dfrac{{{\left( 3\sqrt{2}-\sqrt{14} \right)}^{2}}}{{{\left( 3\sqrt{2} \right)}^{2}}-{{\left( \sqrt{14} \right)}^{2}}}
More simplifying, tanx2=(32)2+(14)22.32.141814=18+141274=321274=837\tan \dfrac{x}{2}=\dfrac{{{\left( 3\sqrt{2} \right)}^{2}}+{{\left( \sqrt{14} \right)}^{2}}-2.3\sqrt{2}.\sqrt{14}}{18-14}=\dfrac{18+14-12\sqrt{7}}{4}=\dfrac{32-12\sqrt{7}}{4}=8-3\sqrt{7}
And, on the other hand,
If cosx2=12(3214)\cos \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right) and sinx2=12(32+14)\sin \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right)and tanx2=12(32+14)12(3214)\tan \dfrac{x}{2}=\dfrac{\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right)}{\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right)}
Thus, tanx2=32+143214=(32+14)2(32)2(14)2\tan \dfrac{x}{2}=\dfrac{3\sqrt{2}+\sqrt{14}}{3\sqrt{2}-\sqrt{14}}=\dfrac{{{\left( 3\sqrt{2}+\sqrt{14} \right)}^{2}}}{{{\left( 3\sqrt{2} \right)}^{2}}-{{\left( \sqrt{14} \right)}^{2}}}
More simplifying, tanx2=(32)2+(14)2+2.32.141814=18+14+1274=32+1274=8+37\tan \dfrac{x}{2}=\dfrac{{{\left( 3\sqrt{2} \right)}^{2}}+{{\left( \sqrt{14} \right)}^{2}}+2.3\sqrt{2}.\sqrt{14}}{18-14}=\dfrac{18+14+12\sqrt{7}}{4}=\dfrac{32+12\sqrt{7}}{4}=8+3\sqrt{7}

So, the correct answer is “Option a”.

Note: In this problem, we have generally used the double angle formula to get our results. There are three forms of double angle formula for cosine. We have used two forms here in the problem, and the one we have not used is cos2x=cos2xsin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x . Then, we only need to know one of them as we can derive the other two by the Pythagorean formula.