Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

Given both θandϕareacuteanglesandsinθ=12,cosϕ=13,\theta and \phi are acute angles and sin \theta=\frac{1}{2}, cos \phi=\frac{1}{3}, then the value of θ+ϕ\theta+\phi belongs to

A

(π3,π6]\Big(\frac{\pi}{3},\frac{\pi}{6}\Big]

B

(π2,2π3]\Big(\frac{\pi}{2},\frac{2\pi}{3}\Big]

C

(2π3,5π6]\Big(\frac{2\pi}{3},\frac{5\pi}{6}\Big]

D

(5π6,π]\Big(\frac{5\pi}{6}, \pi \Big]

Answer

(π2,2π3]\Big(\frac{\pi}{2},\frac{2\pi}{3}\Big]

Explanation

Solution

Since, sinθ=12andcosϕ=13sin \theta=\frac{1}{2} and cos \phi =\frac{1}{3}
θ=π6and0<(cosϕ=13)<12[as0<13<12]\Rightarrow \theta=\frac{\pi}{6} and 0 < \Bigg(cos \phi =\frac{1}{3}\Bigg) < \frac{1}{2} \Bigg[as 0 < \frac{1}{3} < \frac{1}{2}\Bigg]
θ=π6andcos1(0)>ϕ>cos1(12)\Rightarrow \theta=\frac{\pi}{6} and cos^{-1} (0) > \phi > cos^{-1}\Bigg(\frac{1}{2}\Bigg)
[the sign changed as cos x is decreasing between(0,π2)]\Bigg[\text{the sign changed as cos x is decreasing between}\Big(0, \frac{\pi}{2}\Big)\Bigg]
\Rightarrow \hspace25mm \pi =\frac{\pi}{6} and \frac{\pi}{3} < \phi < \frac{\pi}{3}
\Rightarrow \hspace25mm \frac{\pi}{2} < \theta + \phi < \frac{2\pi}{3}
\therefore \hspace25mm \theta \in \Bigg(\frac{\pi}{2},\frac{2\pi}{3}\Bigg)