Solveeit Logo

Question

Question: Given below are two statements: Statement (I): Molal depression constant \(K_f\) is given by \(\fra...

Given below are two statements:

Statement (I): Molal depression constant KfK_f is given by M1RTfΔSfus\frac{M_1RT_f}{\Delta S_{fus}}, where symbols have their usual meaning.

Statement (II) : KfK_f for benzene is less than the KfK_f for water.

In the light of the above statements, choose the most appropriate answer from the options given below:

A

Both Statement (I) and Statement (II) are true

B

Both Statement (I) and Statement (II) are false

C

Statement (I) is true but Statement (II) is false

D

Statement (I) is false but Statement (II) is true

Answer

Statement (I) is true but Statement (II) is false

Explanation

Solution

Statement I Verification:

The freezing point depression is given by:

ΔTf=Kfm\Delta T_f = K_f \cdot m

From thermodynamics, we can derive:

ΔTf=RTf2ΔHfusm\Delta T_f = \frac{R \cdot T_f^2}{\Delta H_{fus}} \cdot m

Since ΔSfus=ΔHfusTf\Delta S_{fus} = \frac{\Delta H_{fus}}{T_f}, we have:

Kf=RTf2ΔHfus=RTf2TfΔSfus=RTfΔSfusK_f = \frac{R \cdot T_f^2}{\Delta H_{fus}} = \frac{R \cdot T_f^2}{T_f \cdot \Delta S_{fus}} = \frac{R \cdot T_f}{\Delta S_{fus}}

When expressed in terms of the solvent’s molar mass M1M_1 (in kg/mol) for unit consistency of KfK_f in °C·kg/mol:

Kf=M1RTfΔSfusK_f = \frac{M_1 \cdot R \cdot T_f}{\Delta S_{fus}}

Thus, Statement (I) is correct.

Statement II Verification:

For water:

  • Tf=273T_f = 273 K
  • M10.018M_1 \approx 0.018 kg/mol
  • ΔHfus6010\Delta H_{fus} \approx 6010 J/mol     \implies ΔSfus601027322\Delta S_{fus} \approx \frac{6010}{273} \approx 22 J/(mol·K)

Calculating KfK_f for water:

Kf=0.018×8.314×273221.85°CkgmolK_f = \frac{0.018 \times 8.314 \times 273}{22} \approx 1.85 \frac{°C \cdot kg}{mol}

For benzene:

  • Tf278.65T_f \approx 278.65 K
  • M10.078M_1 \approx 0.078 kg/mol
  • ΔHfus9900\Delta H_{fus} \approx 9900 J/mol     \implies ΔSfus9900278.6535.54\Delta S_{fus} \approx \frac{9900}{278.65} \approx 35.54 J/(mol·K)

Then,

Kf=0.078×8.314×278.6535.545.08°CkgmolK_f = \frac{0.078 \times 8.314 \times 278.65}{35.54} \approx 5.08 \frac{°C \cdot kg}{mol}

Since KfK_f for benzene (5.08\approx 5.08) is greater than that for water (1.85\approx 1.85), Statement (II) is false.