Question
Question: Given \(a_{i}^{2}\) + \(b_{i}^{2}\) + \(c_{i}^{2}\) = 1 (i = 1, 2, 3) and \(a_{i}a_{j} + b_{i}b_{j} ...
Given ai2 + bi2 + ci2 = 1 (i = 1, 2, 3) and aiaj+bibj+cicj = 0 (i ¹ j; i, j = 1, 2, 3) then the value of a1b1c1a2b2c2a3b3c32 is –
A
0
B
21
C
1
D
2
Answer
1
Explanation
Solution
a1b1c1a2b2c2a3b3c3× a1b1c1a2b2c2a3b3c3
= a1a2a3b1b2b3c1c2c3× a1b1c1a2b2c2a3b3c3 =100010001 = 1