Solveeit Logo

Question

Question: Given, $A^{2+}(aq) + 2e^{-} \rightleftharpoons A(s) \quad E^{\circ} = -0.96 V$ $ACl_2(s) + 2e^{-} \...

Given, A2+(aq)+2eA(s)E=0.96VA^{2+}(aq) + 2e^{-} \rightleftharpoons A(s) \quad E^{\circ} = -0.96 V

ACl2(s)+2eA(s)+2Cl(aq)E=1.1VACl_2(s) + 2e^{-} \rightleftharpoons A(s) + 2Cl^-(aq) \quad E^{\circ} = -1.1V

Find log101Ksp\log_{10} \frac{1}{K_{sp}} (report to the nearest integer), here KspK_{sp} is the solubility product of ACl2(s)ACl_2(s) (2.303RTF=0.0591)\left(\frac{2.303 RT}{F} = 0.0591\right)

Answer

5

Explanation

Solution

To find the solubility product constant (KspK_{sp}) for ACl2(s)ACl_2(s), we need to relate the given standard electrode potentials to the dissolution reaction of ACl2ACl_2.

The dissolution reaction for ACl2(s)ACl_2(s) is: ACl2(s)A2+(aq)+2Cl(aq)ACl_2(s) \rightleftharpoons A^{2+}(aq) + 2Cl^-(aq)

We are given the following standard electrode potentials:

  1. A2+(aq)+2eA(s)E1=0.96VA^{2+}(aq) + 2e^{-} \rightleftharpoons A(s) \quad E^{\circ}_1 = -0.96 V
  2. ACl2(s)+2eA(s)+2Cl(aq)E2=1.1VACl_2(s) + 2e^{-} \rightleftharpoons A(s) + 2Cl^-(aq) \quad E^{\circ}_2 = -1.1V

To obtain the dissolution reaction, we can subtract the first half-reaction from the second half-reaction: (ACl2(s)+2eA(s)+2Cl(aq))(ACl_2(s) + 2e^{-} \rightleftharpoons A(s) + 2Cl^-(aq)) (A2+(aq)+2eA(s))- (A^{2+}(aq) + 2e^{-} \rightleftharpoons A(s))


ACl2(s)A2+(aq)2Cl(aq)ACl_2(s) - A^{2+}(aq) \rightleftharpoons 2Cl^-(aq)

Rearranging this gives the dissolution reaction: ACl2(s)A2+(aq)+2Cl(aq)ACl_2(s) \rightleftharpoons A^{2+}(aq) + 2Cl^-(aq)

The standard cell potential (EcellE^\circ_{cell}) for this reaction is the difference between the standard electrode potentials: Ecell=E2E1E^\circ_{cell} = E^\circ_2 - E^\circ_1 Ecell=(1.1V)(0.96V)E^\circ_{cell} = (-1.1 V) - (-0.96 V) Ecell=1.1V+0.96VE^\circ_{cell} = -1.1 V + 0.96 V Ecell=0.14VE^\circ_{cell} = -0.14 V

This EcellE^\circ_{cell} is related to the equilibrium constant (KspK_{sp} in this case) by the Nernst equation at standard conditions: Ecell=2.303RTnFlog10KspE^\circ_{cell} = \frac{2.303 RT}{nF} \log_{10} K_{sp}

We are given (2.303RTF=0.0591)\left(\frac{2.303 RT}{F} = 0.0591\right). In the dissolution reaction ACl2(s)A2+(aq)+2Cl(aq)ACl_2(s) \rightleftharpoons A^{2+}(aq) + 2Cl^-(aq), the number of electrons transferred (nn) is 2 (as derived from the half-reactions).

Substitute the values into the equation: 0.14V=0.0591V2log10Ksp-0.14 V = \frac{0.0591 V}{2} \log_{10} K_{sp} 0.14=0.02955log10Ksp-0.14 = 0.02955 \log_{10} K_{sp}

Now, solve for log10Ksp\log_{10} K_{sp}: log10Ksp=0.140.02955\log_{10} K_{sp} = \frac{-0.14}{0.02955} log10Ksp4.7377\log_{10} K_{sp} \approx -4.7377

The question asks for log101Ksp\log_{10} \frac{1}{K_{sp}}. log101Ksp=log10Ksp\log_{10} \frac{1}{K_{sp}} = -\log_{10} K_{sp} log101Ksp=(4.7377)\log_{10} \frac{1}{K_{sp}} = -(-4.7377) log101Ksp=4.7377\log_{10} \frac{1}{K_{sp}} = 4.7377

Rounding to the nearest integer, 4.73774.7377 is approximately 5.