Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

GivenA=sin2θ+cos4θ,thenforallrealvaluesofθGiven A = sin^2 \theta + cos^4 \theta , then for all real values of \theta

A

1A21\le A \le 2

B

341A1\frac{3}{4}1\le A \le 1

C

13161A1\frac{13}{16}1\le A \le 1

D

341A1316\frac{3}{4}1\le A \le \frac{13}{16}

Answer

341A1\frac{3}{4}1\le A \le 1

Explanation

Solution

Given,A=sin2θ+(1sin2θ)2Given, A = sin^2 \theta + (1 - sin^2 \theta)^2
\Rightarrow \hspace15mm A=sin^4 \theta -sin^2 \theta +1
\Rightarrow \hspace15mm A=\Bigg(sin^2 \theta-\frac{1}{2}\Bigg)^2+\frac{3}{4}
\Rightarrow \hspace15mm 0 \le\Bigg(sin^2 \theta-\frac{1}{2}\Bigg)^2\le \frac{1}{4} [\because 0 \le sin^2 \theta \le 1]
34A1\therefore \frac{3}{4} \le A \le 1