Question
Mathematics Question on Trigonometric Functions
GivenA=sin2θ+cos4θ,thenforallrealvaluesofθ
A
1≤A≤2
B
431≤A≤1
C
16131≤A≤1
D
431≤A≤1613
Answer
431≤A≤1
Explanation
Solution
Given,A=sin2θ+(1−sin2θ)2
\Rightarrow \hspace15mm A=sin^4 \theta -sin^2 \theta +1
\Rightarrow \hspace15mm A=\Bigg(sin^2 \theta-\frac{1}{2}\Bigg)^2+\frac{3}{4}
\Rightarrow \hspace15mm 0 \le\Bigg(sin^2 \theta-\frac{1}{2}\Bigg)^2\le \frac{1}{4} [\because 0 \le sin^2 \theta \le 1]
∴43≤A≤1