Solveeit Logo

Question

Question: Given a real valued function ‘f’ such that f(x) = \(\left\{ \begin{matrix} \frac{\tan^{2}\{ x\}}{x^...

Given a real valued function ‘f’ such that

f(x) = {tan2{x}x2[x]2forx>01forx=0{x}cot{x}forx<0 \left\{ \begin{matrix} \frac{\tan^{2}\{ x\}}{x^{2} - \lbrack x\rbrack^{2}} & forx > 0 \\ 1 & forx = 0 \\ \sqrt{\{ x\}\cot\{ x\}} & forx < 0 \end{matrix} \right.\ then the value of cot–1(Limx0f(x))2\left( \underset{x \rightarrow 0}{Lim}f(x) \right)^{2}is –

A

0

B

1

C

–1

D

None

Answer

None

Explanation

Solution

Limx0\operatorname { Lim } _ { x \rightarrow 0 ^ { - } } f(x) = {h}cot{h}\sqrt { \{ - \mathrm { h } \} \cot \{ - \mathrm { h } \} }

= (1h)cot(1h)\sqrt { ( 1 - \mathrm { h } ) \cot ( 1 - \mathrm { h } ) } = cot1\sqrt { \cot 1 }

Limx0+\operatorname { Lim } _ { x \rightarrow 0 ^ { + } }f(x) = = = 1

f(x) does not exist.