Question
Question: Given a real valued function ‘f’ such that f(x) = \(\left\{ \begin{matrix} \frac{\tan^{2}\{ x\}}{x^...
Given a real valued function ‘f’ such that
f(x) = ⎩⎨⎧x2−[x]2tan2{x}1{x}cot{x}forx>0forx=0forx<0 then the value of cot–1(x→0Limf(x))2is –
A
0
B
1
C
–1
D
None
Answer
None
Explanation
Solution
Limx→0− f(x) = {−h}cot{−h}
= (1−h)cot(1−h) = cot1
Limx→0+f(x) = =
= 1
∴ f(x) does not exist.