Solveeit Logo

Question

Question: Given a matrix \(A=\left[ \begin{matrix} a & b & c \\\ b & c & a \\\ c & a & b \\\ ...

Given a matrix A=[abc bca cab ]A=\left[ \begin{matrix} a & b & c \\\ b & c & a \\\ c & a & b \\\ \end{matrix} \right] , where a, b, c are real positive numbers, abc = 1and ATA=I{{A}^{T}}A=I then find the value of a3+b3+c3.{{a}^{3}}+{{b}^{3}}+{{c}^{3}}.

Explanation

Solution

Hint:FindAT{{A}^{T}} by changing the row elements to column. Now, use the relation ATA=I{{A}^{T}}A=I and abc=1abc=1to get the value of a3+b3+c3{{a}^{3}}+{{b}^{3}}+{{c}^{3}}. Use the relation
a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca){{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)

Complete step by step answer:
Here, matrix A is given as
A=[abc bca cab ]A=\left[ \begin{matrix} a & b & c \\\ b & c & a \\\ c & a & b \\\ \end{matrix} \right]……….. (i)
Where a, b, c are real numbers, with relations
abc = 1 ……………….. (ii)
ATA=I{{A}^{T}}A=I ……………(iii)
We need to determine the value of a3+b3+c3{{a}^{3}}+{{b}^{3}}+{{c}^{3}} from the above equations.
Now, let us find the value of AT{{A}^{T}} and put values of A and AT{{A}^{T}}in equation (iii) to relation in a, b, c.
So, AT{{A}^{T}} can be written using the equation (i) i.e. from ‘A’:
AT=[abc bca cab ]{{A}^{T}}=\left[ \begin{matrix} a & b & c \\\ b & c & a \\\ c & a & b \\\ \end{matrix} \right]………. (iv)
So, putting values of A and AT{{A}^{T}} in equation (iii), we get
A.AT{{A}^{T}} = I
Where I can be given as
I=[100 010 001 ]I=\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right]
Hence,
[abc bca cab ][abc bca cab ]=[100 010 001 ]\left[ \begin{matrix} a & b & c \\\ b & c & a \\\ c & a & b \\\ \end{matrix} \right]\left[ \begin{matrix} a & b & c \\\ b & c & a \\\ c & a & b \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right]
Now, we can get A.AT{{A}^{T}}using above equation by multiplying the matrices A and AT{{A}^{T}}in the above equation; we get,

& \\\ & \left[ \begin{matrix} {{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{ab+bc+ca} & \text{ac+ba+bc} \\\ \text{ab+bc+ac} & {{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{bc+ac+ab} \\\ \text{ac+ab+bc} & \text{bc+ac+ab} & {{\text{c}}^{\text{2}}}\text{+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right] \\\ \end{aligned}$$ Now, we can compare the above two matrices and equate the elements to get relations in (a, b, c). Hence, we can further write the above matrix as: $$\left[ \begin{matrix} {{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{ab+bc+ca} & \text{ab+bc+ca} \\\ \text{ab+bc+ca} & {{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{ab+bc+ca} \\\ \text{ab+bc+ca} & \text{ab+bc+ca} & {{a}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right]$$ Hence, we get two relations from above equations as ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1$ ………………. (v) And $ab+bc+ca=0$……………… (vi) Now, we know the algebraic identity of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc$ can be given as ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)$ Or $\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-\left( ab+bc+ca \right) \right)$…………..(vii) Now, put the values of ${{a}^{2}}+{{b}^{2}}+{{c}^{2}},abc,ab+bc+ca$ from equation (v),(ii) and (vi) respectively in the equation (vii), hence, we get ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3\left( 1 \right)=\left( a+b+c \right)\left( 1-0 \right)$ ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3+\left( a+b+c \right)$………..(viii) Now, we can use value of a + b + c by using the algebraic identity ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)$ Now, using relation (v) and (vi), we can get value of $\left( a+b+c \right)$ as $\begin{aligned} & {{\left( a+b+c \right)}^{2}}=1+2\left( 0 \right) \\\ & {{\left( a+b+c \right)}^{2}}=1 \\\ \end{aligned}$ And hence, $a+b+c=\pm 1$ As we already know the values of (a, b, c) are real and positive from the question, so, $a+b+c$ can never be ‘-1’. Hence, the value of (a + b + c) be ‘1’. Hence, a + b + c = 1 ………….. (ix). So, putting value of (a + b + c) in equation (viii) to get the value of${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$. Hence,we get ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3+1=4$ So, ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=4$ Note: One can go wrong with the algebraic identities ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc$ and ${{\left( a+b+c \right)}^{2}}$. So, identities should be very clear for solving these kinds of problems. One may try calculate exact values of given relations i.e. abc = 1, ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1$and $ab+bc+ca=0$. So, one can think, we have three equations and three variables so, we can calculate exact values of a,b,c which is the wrong approach for getting value of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$. As, we don’t need exact values of a, b, c we need value of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$, so try to relate the problem with the algebraic identities. Calculating values of (a, b, c) is the complex approach for these kinds of problems.