Solveeit Logo

Question

Mathematics Question on geometric progression

Given a G.P. with a = 729 and 7th term 64, determine S7.

Answer

a = 729
a7 = 64
Let r be the common ratio of the G.P.
It is known that, an = a r n-1
a7 = ar7-1 = (729)r 6
⇒ 64 = 729 r 6
r6=64729⇒ r^6 = \frac{64 }{ 729}
r6=(23)6⇒ r^6 = (\frac{2 }{ 3})^6
r=23⇒ r =\frac{ 2 }{ 3}
Also, it is known that, Sn=a(1rn)1rS_n = \frac{a(1 - r^n) }{ 1 - r}
S7=729[1(23)7]123 S_7 = \frac{729 [ 1 - (\frac{2 }{ 3})^7 ] }{ 1 - \frac{2 }{3}}
=3×729[1(23)7]= 3 × 729 [1 - (\frac{2 }{ 3})^7]
=(3)[(3)7(2)7(3)7]= (3)^ [ \frac{(3)^7 - (2)^7 }{ (3)^7} ]
=(3)7(2)7= (3)^7 - (2)^7
=2187128= 2187 - 128
=2059= 2059