Solveeit Logo

Question

Question: Given a function f : [0, 4] → R is differentiable, then for some a, b ∈ (0, 4) [f(4)]^2 – [f(0)]^2 ...

Given a function f : [0, 4] → R is differentiable, then for some a, b ∈ (0, 4) [f(4)]^2 – [f(0)]^2 =

A

8 f ′(2) f (1)

B

4 f ′(2) f (1)

C

2 f ′(2) f (1)

D

f′(2) f(1)

Answer

8 f ′(2) f (1)

Explanation

Solution

Since f(x) is differentiable in [0, 4], using Lagrange's Mean Value Theorem.

f′(2) = f(4)f(0)4\frac{f(4) - f(0)}{4}, b ∈ (0, 4) …(1)

Now, {f(4)2 – {f(0)}2 = 4{f(4)f(0)}4\frac{4\{ f(4) - f(0)\}}{4} {f(4) + f(0)}

= 4f′(2) {f(4) + f(0)}… (2)

Also, from Intermediate Mean Value Theorem,

f(4)+f(0)2\frac{f(4) + f(0)}{2} = f(1) for a ∈ (0, 4).

Hence, from (2) [f(4)2] – [f(0)]2 = 8f′ (2) f(1).