Solveeit Logo

Question

Mathematics Question on Matrices

Given A=[0αβ α0γ βγ0],A = \begin{bmatrix} 0 & \alpha & \beta \\\ -\alpha & 0 & \gamma \\\ -\beta & -\gamma & 0 \end{bmatrix}, the matrix AA is a:
(A) square matrix
(B) diagonal matrix
(C) symmetric matrix
(D) skew-symmetric matrix .
Choose the correct answer from the options given below:

A

(A) and (D) only

B

(A) and (C) only

C

(A), (B) and (C) only

D

(A), (B) and (D) only

Answer

(A) and (D) only

Explanation

Solution

Matrix AA is a 3×33 \times 3 square matrix. To determine if it is skew-symmetric, we check if AT=AA^T = -A. The transpose of AA is:

AT=[0αβ α0γ βγ0].A^T = \begin{bmatrix} 0 & -\alpha & -\beta \\\ \alpha & 0 & -\gamma \\\ \beta & \gamma & 0 \end{bmatrix}.

Clearly, AT=AA^T = -A, so AA is a skew-symmetric matrix.

(B) The matrix is not a diagonal matrix since not all non-diagonal elements are zero.

(C) The matrix is not symmetric since ATAA^T \neq A.