Solveeit Logo

Question

Mathematics Question on Matrices

Given 3\begin{bmatrix}x&y\\\z&w\end{bmatrix}$$=\begin{bmatrix}x&6\\\\-1&2w\end{bmatrix}+\begin{bmatrix}4& x+y\\\ z+w& 3\end{bmatrix},find the values of x,y,z and w

Answer

The correct answer is x=2,y=4,z=1  and  w=3x=2,y=4,z=1\space and\space w=3
3\begin{bmatrix}x&y\\\z&w\end{bmatrix}$$=\begin{bmatrix}x&6\\\\-1&2w\end{bmatrix}+\begin{bmatrix}4& x+y\\\ z+w& 3\end{bmatrix}
    [3x3y 3z3w]=[x+46+x+y 1+z+w2w+3]\implies\begin{bmatrix}3x& 3y\\\ 3z& 3w\end{bmatrix}=\begin{bmatrix}x+4& 6+x+y\\\ -1+z+w& 2w+3\end{bmatrix}
Comparing the corresponding elements of these two matrices, we get:
3x=x+43x=x+4
    2x=4\implies2x=4
    x=2\implies x=2
3y=6+x+y3y=6+x+y
    2y=6+x\implies2y=6+x
    y=4\implies y=4
3w=2w+33w=2w+3
    w=3\implies w=3
3z=1+z+w3z=-1+z+w
    2z=1+w\implies2z=-1+w
=1+3=-1+3
    z=1\implies z=1
x=2,y=4,z=1  and  w=3\therefore x=2,y=4,z=1\space and\space w=3