Question
Mathematics Question on Matrices
Given 3\begin{bmatrix}x&y\\\z&w\end{bmatrix}$$=\begin{bmatrix}x&6\\\\-1&2w\end{bmatrix}+\begin{bmatrix}4& x+y\\\ z+w& 3\end{bmatrix},find the values of x,y,z and w
Answer
The correct answer is x=2,y=4,z=1andw=3
3\begin{bmatrix}x&y\\\z&w\end{bmatrix}$$=\begin{bmatrix}x&6\\\\-1&2w\end{bmatrix}+\begin{bmatrix}4& x+y\\\ z+w& 3\end{bmatrix}
⟹[3x 3z3y3w]=[x+4 −1+z+w6+x+y2w+3]
Comparing the corresponding elements of these two matrices, we get:
3x=x+4
⟹2x=4
⟹x=2
3y=6+x+y
⟹2y=6+x
⟹y=4
3w=2w+3
⟹w=3
3z=−1+z+w
⟹2z=−1+w
=−1+3
⟹z=1
∴x=2,y=4,z=1andw=3