Solveeit Logo

Question

Mathematics Question on Trigonometric Ratios

Given 15 cot A = 8. Find sin A and sec A.

Answer

Consider a right-angled triangle, right-angled at B.
15 cot A=8.Find sin A and sec A
 cot A=Side  Adjacent  to ASide  Opposite  to A\text{ cot A} = \frac{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠A }{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠A }
ABBC\frac{AB}{BC}
It is given that,
cot A =815\frac{8}{15}

ABBC=815\frac{AB}{BC}=\frac{8}{15}

Let AB be 8k. Therefore, BC will be 15k, where k is a positive integer.
Applying Pythagoras theorem in ΔΔABC, we obtain.
AC2= AB2+ BC2\text{AC}^ 2 =\text{ AB}^ 2 +\text{ BC}^ 2
=(8k)2+(15k)2= (8k)^ 2 + (15k) ^2
=64k2+225k2= 64k ^2 + 225k ^2
=289k2= 289k^ 2
AC = 17k
 sin A=Side  Opposite  to AHypotenuse\text{ sin A} = \frac{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠A }{\text{Hypotenuse}}

BCAC=1517\frac{BC}{AC}= \frac{15}{17}

 sec A=HypotenuseSide  Adjacent  to A\text{ sec A} = \frac{\text{Hypotenuse}}{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠A }

ACAB=178\frac{AC}{AB}=\frac{17}{8}