Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Given 0x120 \leq x \leq \frac {1}{2} then the value of \tan \left[\sin^{-1}\left\\{\frac{x}{\sqrt {2}}+\frac {\sqrt {1-x^2}} {\sqrt {2}}\right\\}-\sin^{-1}x\right] is

A

3\sqrt {3}

B

13\frac {1}{\sqrt {3}}

C

11

D

1-1

Answer

11

Explanation

Solution

Given, for 0x120 \leq x \leq \frac{1}{2}
\tan \left[\sin ^{-1}\left\\{\frac{x}{\sqrt{2}}+\frac{\sqrt{1-x^{2}}}{\sqrt{2}}\right\\}-\sin ^{-1} x\right]
=\tan \left[\sin ^{-1}\left\\{\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right\\}-\sin ^{-1} x\right]
Put sin1x=θx=sinθ\sin ^{-1} x=\theta \Rightarrow x=\sin \theta
=\tan [\left[\sin ^{-1}\left\\{\frac{\sin \theta+\sqrt{1-\sin ^{2} \theta}}{\sqrt{2}}\right\\}-\theta\right]
=\tan \left[\sin ^{-1}\left\\{\frac{1}{\sqrt{2}} \sin \theta+\frac{1}{\sqrt{2}} \cos \theta\right\\}-\theta\right]
=\tan \left[\sin ^{-1}\left\\{\sin \left(\theta+\frac{\pi}{4}\right)\right\\}-\theta\right]
=tan[θ+π4θ]=\tan \left[\theta+\frac{\pi}{4}-\theta\right]
=tanπ4=1=\tan \frac{\pi}{4}=1