Question
Mathematics Question on Inverse Trigonometric Functions
Given 0≤x≤21 then the value of \tan \left[\sin^{-1}\left\\{\frac{x}{\sqrt {2}}+\frac {\sqrt {1-x^2}} {\sqrt {2}}\right\\}-\sin^{-1}x\right] is
A
3
B
31
C
1
D
−1
Answer
1
Explanation
Solution
Given, for 0≤x≤21
\tan \left[\sin ^{-1}\left\\{\frac{x}{\sqrt{2}}+\frac{\sqrt{1-x^{2}}}{\sqrt{2}}\right\\}-\sin ^{-1} x\right]
=\tan \left[\sin ^{-1}\left\\{\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right\\}-\sin ^{-1} x\right]
Put sin−1x=θ⇒x=sinθ
=\tan [\left[\sin ^{-1}\left\\{\frac{\sin \theta+\sqrt{1-\sin ^{2} \theta}}{\sqrt{2}}\right\\}-\theta\right]
=\tan \left[\sin ^{-1}\left\\{\frac{1}{\sqrt{2}} \sin \theta+\frac{1}{\sqrt{2}} \cos \theta\right\\}-\theta\right]
=\tan \left[\sin ^{-1}\left\\{\sin \left(\theta+\frac{\pi}{4}\right)\right\\}-\theta\right]
=tan[θ+4π−θ]
=tan4π=1