Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Give that f(x) =1cos4xx2\frac {1-cos4x}{x^2} if x < 0 ,f(x) = a if x = 0 , f(x) =x16+x4\frac {\sqrt {x}}{\sqrt {16 + \sqrt {x} }- 4} if x > 0, is continuous at x = 0, then a will be

A

16

B

2

C

4

D

8

Answer

8

Explanation

Solution

As we know that function is continuous at x = 0, then:
lim (x→0-) f(x)= lim (x→0+) f(x) = f(a)
lim (x→0-) f(x) = lim (x→0-) 1cos4xx2\frac {1-cos4x}{x^2}
lim (x→0-) f(x) = lim (x→0-) (2sin22x)(2x)2 .4\frac {(2 sin^2 2x)}{(2x)^2}\ .4 = 8
lim (x→0+) f(x) = lim (x→0+)x16+x4\frac {\sqrt {x}}{\sqrt {16 + \sqrt {x} }- 4}
lim (x→0+) = 16+x+4{\sqrt {16 + \sqrt {x} } + 4}= 8
and f(0)= 8
so, a = 8
Therefore the correct option is (D) 8.