Solveeit Logo

Question

Question: Give that at\(\mathbf{2}\mathbf{5}^{\mathbf{o}}\mathbf{C}\), for \[Cr^{3 +}(aq) + e^{-} \rightarrow...

Give that at25oC\mathbf{2}\mathbf{5}^{\mathbf{o}}\mathbf{C}, for

Cr3+(aq)+eCr2+(aq),E0=0.424VCr^{3 +}(aq) + e^{-} \rightarrow Cr^{2 +}(aq),E^{0} = - 0.424V

Cr2+(aq)+2eCr(s),E0=0.900VCr^{2 +}(aq) + 2e^{-} \rightarrow Cr(s),E^{0} = - 0.900V

findE0E^{0}at 250C25^{0}Cfor Cr3+(aq)+3eCr(s)Cr^{3 +}(aq) + 3e \rightarrow Cr(s)

A

– 0.741V

B
  • 0.741 V
C

– 1.324 V

D

– 0.476 V

Answer

– 0.741V

Explanation

Solution

Adding the first two reactions, we get the third equation and using the free energy concept, we have

ΔG10+ΔG20=ΔG30\Delta G_{1}^{0} + \Delta G_{2}^{0} = \Delta G_{3}^{0}; n1E10Fn2E20F=n3E30F- n_{1}E_{1}^{0}F - n_{2}E_{2}^{0}F = - n_{3}E_{3}^{0}F

(n = number of electron involved)

E30=n1E10+n2E20n3=1×(0.424)+2×(0.900)3=0.741V\mathbf{E}_{\mathbf{3}}^{\mathbf{0}}\mathbf{=}\frac{\mathbf{n}_{\mathbf{1}}\mathbf{E}_{\mathbf{1}}^{\mathbf{0}}\mathbf{+}\mathbf{n}_{\mathbf{2}}\mathbf{E}_{\mathbf{2}}^{\mathbf{0}}}{\mathbf{n}_{\mathbf{3}}}\mathbf{=}\frac{\mathbf{1}\mathbf{\times}\mathbf{(}\mathbf{-}\mathbf{0.424) + 2}\mathbf{\times}\mathbf{(}\mathbf{-}\mathbf{0.900)}}{\mathbf{3}}\mathbf{=}\mathbf{-}\mathbf{0.741V}