Solveeit Logo

Question

Question: Determine if the lines $L_1$ and $L_2$ are parallel, intersecting, or skew. If they are skew, find t...

Determine if the lines L1L_1 and L2L_2 are parallel, intersecting, or skew. If they are skew, find the shortest distance between them.

The lines are given by: L1:r=(i^+2j^+3k^)+λ(i^3j^+2k^)L_1: \vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{i} - 3\hat{j} + 2\hat{k}) L2:r=(4i^+5j^+6k^)+μ(2i^+3j^+k^)L_2: \vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu (2\hat{i} + 3\hat{j} + \hat{k})

Answer

The lines are skew.
The shortest distance between them is 31919\frac{3\sqrt{19}}{19} units.

Explanation

Solution

  1. Identify points and direction vectors:
    For L1L_1: a1=i^+2j^+3k^\vec{a_1} = \hat{i} + 2\hat{j} + 3\hat{k} and b1=i^3j^+2k^\vec{b_1} = \hat{i} - 3\hat{j} + 2\hat{k}.
    For L2L_2: a2=4i^+5j^+6k^\vec{a_2} = 4\hat{i} + 5\hat{j} + 6\hat{k} and b2=2i^+3j^+k^\vec{b_2} = 2\hat{i} + 3\hat{j} + \hat{k}.

  2. Check for parallelism:
    Compare direction vectors b1\vec{b_1} and b2\vec{b_2}.
    b1=i^3j^+2k^\vec{b_1} = \hat{i} - 3\hat{j} + 2\hat{k}
    b2=2i^+3j^+k^\vec{b_2} = 2\hat{i} + 3\hat{j} + \hat{k}
    Since 123321\frac{1}{2} \neq \frac{-3}{3} \neq \frac{2}{1}, the direction vectors are not proportional. Therefore, the lines are not parallel.

  3. Check for intersection (coplanarity):
    Calculate a2a1\vec{a_2} - \vec{a_1}:
    a2a1=(41)i^+(52)j^+(63)k^=3i^+3j^+3k^\vec{a_2} - \vec{a_1} = (4-1)\hat{i} + (5-2)\hat{j} + (6-3)\hat{k} = 3\hat{i} + 3\hat{j} + 3\hat{k}.

Calculate b1×b2\vec{b_1} \times \vec{b_2}:

b1×b2=i^j^k^132231=i^((3)(1)(2)(3))j^((1)(1)(2)(2))+k^((1)(3)(3)(2))\vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ 2 & 3 & 1 \end{vmatrix} = \hat{i}((-3)(1) - (2)(3)) - \hat{j}((1)(1) - (2)(2)) + \hat{k}((1)(3) - (-3)(2)) =i^(36)j^(14)+k^(3+6)=9i^+3j^+9k^= \hat{i}(-3 - 6) - \hat{j}(1 - 4) + \hat{k}(3 + 6) = -9\hat{i} + 3\hat{j} + 9\hat{k}

Calculate the scalar triple product (a2a1)(b1×b2)(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2}):

(3i^+3j^+3k^)(9i^+3j^+9k^)=(3)(9)+(3)(3)+(3)(9)(3\hat{i} + 3\hat{j} + 3\hat{k}) \cdot (-9\hat{i} + 3\hat{j} + 9\hat{k}) = (3)(-9) + (3)(3) + (3)(9) =27+9+27=9= -27 + 9 + 27 = 9

Since the scalar triple product is 909 \neq 0, the lines are not coplanar. As they are neither parallel nor coplanar, the lines are skew.

  1. Calculate the shortest distance between skew lines:
    The formula for the shortest distance dd between two skew lines is:
d=(a2a1)(b1×b2)b1×b2d = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|}

We have already calculated the numerator: (a2a1)(b1×b2)=9=9|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})| = |9| = 9.

Now calculate the magnitude of b1×b2\vec{b_1} \times \vec{b_2}:

b1×b2=9i^+3j^+9k^=(9)2+(3)2+(9)2|\vec{b_1} \times \vec{b_2}| = |-9\hat{i} + 3\hat{j} + 9\hat{k}| = \sqrt{(-9)^2 + (3)^2 + (9)^2} =81+9+81=171= \sqrt{81 + 9 + 81} = \sqrt{171} =9×19=319= \sqrt{9 \times 19} = 3\sqrt{19}

Substitute these values into the distance formula:

d=9319=319d = \frac{9}{3\sqrt{19}} = \frac{3}{\sqrt{19}}

Rationalize the denominator:

d=319×1919=31919d = \frac{3}{\sqrt{19}} \times \frac{\sqrt{19}}{\sqrt{19}} = \frac{3\sqrt{19}}{19}