Solveeit Logo

Question

Question: Give me differentiation of sin x/cos2x...

Give me differentiation of sin x/cos2x

Answer

f'(x)=\frac{\cos x\cos2x+2\sin x\sin2x}{\cos^2 2x}.

Explanation

Solution

Solution

Let

f(x)=sinxcos2x.f(x)=\frac{\sin x}{\cos2x}.

Using the quotient rule:

f(x)=(sinx)cos2xsinx(cos2x)(cos2x)2.f'(x)=\frac{(\sin x)' \cdot \cos 2x - \sin x \cdot (\cos2x)'}{(\cos2x)^2}.

We have:

(sinx)=cosx,(\sin x)'=\cos x,

and

(cos2x)=2sin2x.(\cos2x)'=-2\sin2x.

Thus,

f(x)=cosxcos2xsinx(2sin2x)(cos2x)2=cosxcos2x+2sinxsin2x(cos2x)2.f'(x)=\frac{\cos x\cdot\cos2x - \sin x \cdot (-2\sin2x)}{(\cos2x)^2}=\frac{\cos x\cdot\cos2x+2\sin x\sin2x}{(\cos2x)^2}.

Explanation (minimal): Differentiate using the quotient rule, noting that (sinx)=cosx(\sin x)'=\cos x and (cos2x)=2sin2x(\cos2x)'=-2\sin2x. Substitute these into the formula and simplify.