Solveeit Logo

Question

Question: Give all formulas for dual nature...

Give all formulas for dual nature

Answer

Constants:

  • hh: Planck's constant (6.626×1034 J s6.626 \times 10^{-34} \text{ J s})
  • cc: Speed of light in vacuum (3×108 m/s3 \times 10^8 \text{ m/s})
  • ee: Elementary charge (1.602×1019 C1.602 \times 10^{-19} \text{ C})
  • kBk_B: Boltzmann constant (1.381×1023 J/K1.381 \times 10^{-23} \text{ J/K})

I. Dual Nature of Radiation (Light as Particles - Photons)

  • Photon Energy: E=hfE = hf E=hcλE = \frac{hc}{\lambda}

  • Photon Momentum: p=hλp = \frac{h}{\lambda} p=Ecp = \frac{E}{c}

II. Photoelectric Effect

  • Einstein's Photoelectric Equation: Kmax=hfϕK_{max} = hf - \phi

  • Work Function (ϕ\phi): ϕ=hf0\phi = hf_0 ϕ=hcλ0\phi = \frac{hc}{\lambda_0}

  • Maximum Kinetic Energy in terms of Stopping Potential (VsV_s): Kmax=eVsK_{max} = eV_s

  • Combined Equation: eVs=hfϕeV_s = hf - \phi eVs=hfhf0eV_s = hf - hf_0 eVs=h(ff0)eV_s = h(f - f_0) eVs=hc(1λ1λ0)eV_s = hc\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)

III. Dual Nature of Matter (de Broglie Hypothesis)

  • De Broglie Wavelength (λ\lambda): λ=hp\lambda = \frac{h}{p}

  • For a particle of mass mm and velocity vv: λ=hmv\lambda = \frac{h}{mv}

  • For a particle with kinetic energy KK: λ=h2mK\lambda = \frac{h}{\sqrt{2mK}}

  • For an electron accelerated by a potential difference VV: λ=h2meV\lambda = \frac{h}{\sqrt{2meV}} λ1.227V nm\lambda \approx \frac{1.227}{\sqrt{V}} \text{ nm}

  • For a gas molecule at temperature TT: λ=h3mkBT\lambda = \frac{h}{\sqrt{3mk_BT}}

Explanation

Solution

The dual nature of radiation and matter is described by a set of fundamental formulas that connect properties like energy, frequency, wavelength, momentum, and kinetic energy for both photons and particles. These formulas are crucial for understanding phenomena such as the photoelectric effect and the de Broglie hypothesis.