Solveeit Logo

Question

Question: Get x, y from below equation and find value of y – x, where x and y are real numbers \[{{\left( -2...

Get x, y from below equation and find value of y – x, where x and y are real numbers
(213i)3=x+iy27,(i=1){{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\dfrac{x+iy}{27},\left( i=\sqrt{-1} \right)
(a)-85
(b)85
(c)-91
(d)91

Explanation

Solution

Hint: First solve the left hand side like a normal algebraic equation. Then multiply and divide by 27 then compare with the right hand side to find values of x, y.
You can use distributive property:
b.(a + c) = b.a + b.c

Complete step-by-step solution -

First we need to separate out the left hand side.
L.H.S.=(213i)3L.H.S.={{\left( -2-\dfrac{1}{3}i \right)}^{3}}
Now write it as a multiplication of 3 same terms.
(213i)3=(213i).(213i).(213i){{\left( -2-\dfrac{1}{3}i \right)}^{3}}=\left( -2-\dfrac{1}{3}i \right).\left( -2-\dfrac{1}{3}i \right).\left( -2-\dfrac{1}{3}i \right)
By treating 2 multiplied terms as one entity we can apply distributive law:
b.(a + c) = b.a + b.c

By applying above law, we get:
=2.(2i3).(2i3)i3.(2i3).(2i3)=-2.\left( -2-\dfrac{i}{3} \right).\left( -2-\dfrac{i}{3} \right)-\dfrac{i}{3}.\left( -2-\dfrac{i}{3} \right).\left( -2-\dfrac{i}{3} \right)
Now you can take one term as common and apply distributive law again.
=(2i3)(2.(2i3)i3.(2i3))=\left( -2-\dfrac{i}{3} \right)\left( -2.\left( -2-\dfrac{i}{3} \right)-\dfrac{i}{3}.\left( -2-\dfrac{i}{3} \right) \right)
By applying distributive law twice inside the bracket we get:
=(2i3)((2.2)+(2.i3)+(2.i3)+(i3.i3))=\left( -2-\dfrac{i}{3} \right)\left( \left( -2.-2 \right)+\left( -2.\dfrac{-i}{3} \right)+\left( -2.\dfrac{-i}{3} \right)+\left( \dfrac{-i}{3}.\dfrac{-i}{3} \right) \right)
By simplifying, we get:

& =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{2i}{3}+\dfrac{2i}{3}+\dfrac{{{i}^{2}}}{9} \right) \\\ & =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{4i}{3}+\dfrac{{{i}^{2}}}{9} \right) \\\ \end{aligned}$$ We know: i is solution of equation: $${{i}^{2}}=-1$$ By substituting above equation and simplifying, we get: $$\begin{aligned} & =\left( -2-\dfrac{i}{3} \right)\left( 4+\dfrac{4i}{3}-\dfrac{1}{9} \right) \\\ & =\left( -2-\dfrac{i}{3} \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right) \\\ \end{aligned}$$ By treating one of the both terms as one entity apply distributive law. b.(a + c) = b.a + b.c $$=\left( -2 \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right)+\left( -\dfrac{i}{3} \right)\left( \dfrac{35}{9}+\dfrac{4i}{3} \right)$$ By applying distributive law twice with each term, we get: $$=\left( -2.\dfrac{35}{9} \right)+\left( -2.\dfrac{4i}{3} \right)+\left( \dfrac{-i}{3}.\dfrac{35}{9} \right)+\left( \dfrac{-i}{3}.\dfrac{4i}{3} \right)$$ We know, i is solution of equation: $${{i}^{2}}=-1$$ By substituting above equation and simplifying, we get: $$=\left( -\dfrac{70}{9} \right)+\left( \dfrac{-8i}{3} \right)+\left( \dfrac{-35i}{27} \right)+\left( \dfrac{4}{9} \right)$$ Now adding the real terms and imaginary terms separately, we get: $$\begin{aligned} & =\left( -\dfrac{66}{9} \right)+\left( \dfrac{-107i}{27} \right) \\\ & =\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right) \\\ \end{aligned}$$ Finally, $$\text{left hand side = }\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right)\text{ }$$ Now taking right hand side into consideration, we get: $$\text{right hand side = }\dfrac{x+iy}{27}$$ By separating real and imaginary terms, we get: $$\text{right hand side = }\dfrac{x}{27}+\dfrac{iy}{27}$$ By equating left hand side and right hand side, we get: $$\left( -\dfrac{22}{3} \right)+\left( \dfrac{-107i}{27} \right)\text{=}\dfrac{x}{27}\text{+}\dfrac{iy}{27}\text{ }$$ By equating real terms, we get: $$\dfrac{x}{27}=-\dfrac{22}{3}$$ By multiplying 27 on both sides, we get: $$\begin{aligned} & \dfrac{x}{27}\times 27=\dfrac{-22}{3}\times 27 \\\ & \\\ \end{aligned}$$ By equating imaginary terms, we get: $$\dfrac{iy}{27}=-\dfrac{107i}{27}$$ By multiplying 27 on both sides and cancelling i, we get: $$\begin{aligned} & \dfrac{iy}{27}\times 27=\dfrac{-107i}{27}\times 27 \\\ & \\\ \end{aligned}$$ We need y – x. By above values we can say: y – x = -107 – (-198) = -107 + 198 = 91 $$\therefore $$The value of y – x is 91. Option (d) is correct. Note: Don’t take the left hand side directly, first you have to multiply 27 or else you’ll get a different answer which is also present in options. This way you may lead to the wrong answer. Alternative method is to apply a algebraic identity: $${{\left( a+b \right)}^{3}}={{a}^{3}}+3ab\left( a+b \right)+{{b}^{3}}$$.