Solveeit Logo

Question

Question: Express \(y=\textrm{tan}\left(\frac{\sqrt{1-x^{2}}}{x}\right)\) in terms of Cos inverse x...

Express y=tan(1x2x)y=\textrm{tan}\left(\frac{\sqrt{1-x^{2}}}{x}\right) in terms of Cos inverse x

Answer

The expression in terms of cos1x\cos^{-1} x is tan(tan(arccosx))\tan(\tan(\arccos x)).

Explanation

Solution

Let θ=arccosx\theta = \arccos x. Then x=cosθx = \cos \theta and 1x2=sinθ\sqrt{1-x^2} = \sin \theta for θ[0,π]\theta \in [0, \pi]. Substituting these into the given equation y=tan(1x2x)y=\tan\left(\frac{\sqrt{1-x^{2}}}{x}\right) yields y=tan(sinθcosθ)=tan(tanθ)y=\tan\left(\frac{\sin \theta}{\cos \theta}\right) = \tan(\tan \theta). Replacing θ\theta with arccosx\arccos x gives the final answer.