Solveeit Logo

Question

Question: General value of \(\theta\) satisfying the equation \(\tan^{2}\theta + \sec 2\theta = 1\)is...

General value of θ\theta satisfying the equation tan2θ+sec2θ=1\tan^{2}\theta + \sec 2\theta = 1is

A

mπ,nπ+π3m\pi,n\pi + \frac{\pi}{3}

B

mπ,nπ±π3m\pi,n\pi \pm \frac{\pi}{3}

C

mπ,nπ±π6m\pi,n\pi \pm \frac{\pi}{6}

D

None of these

Answer

mπ,nπ±π3m\pi,n\pi \pm \frac{\pi}{3}

Explanation

Solution

tan2θ+sec2θ=1\tan^{2}\theta + \sec 2\theta = 1tan2θ+1+tan2θ1tan2θ=1\tan^{2}\theta + \frac{1 + \tan^{2}\theta}{1 - \tan^{2}\theta} = 1

tan2θtan4θ+1+tan2θ=1tan2θ\tan ^ { 2 } \theta - \tan ^ { 4 } \theta + 1 + \tan ^ { 2 } \theta = 1 - \tan ^ { 2 } \theta tan4θ3tan2θ=0\tan^{4}\theta - 3\tan^{2}\theta = 0tan2θ(tan2θ3)=0\tan^{2}\theta(\tan^{2}\theta - 3) = 0tan2θ=0\tan^{2}\theta = 0 and tan2θ=3\tan^{2}\theta = 3

tan2θ=tan20\tan^{2}\theta = \tan^{2}0 and tan2θ=tan2π3\tan^{2}\theta = \tan^{2}\frac{\pi}{3}θ=mπ\theta = m\pi and

θ=nπ±π3.\theta = n\pi \pm \frac{\pi}{3}.