Solveeit Logo

Question

Mathematics Question on Differential equations

General solution of ydydx+by2=acosx,0<x<1y \frac{dy}{dx}+by^{2}=a\,cos\,x, 0 < x< 1 is

A

y2=2a(2bsinx+cosx)+ce2bxy^{2} = 2a\left(2b\, sinx + cosx\right) + ce^{-2bx}

B

(4b2+1)y2=2a(sinx+2bcosx)+ce2bx\left(4b^{2} + 1\right)y^{2} = 2a\left(sinx + 2bcosx\right) + ce^{-2bx}

C

(4b2+1)y2=2a(sinx+2bcosx)+ce2bx\left(4b^{2} + 1\right)y^{2} = 2a\left(sinx + 2bcosx\right) + ce^{2bx}

D

y2=2a(2bsinx+cosx)+ce2bxy^{2} = 2a\left(2bsinx + cosx\right) + ce^{2bx}

Answer

(4b2+1)y2=2a(sinx+2bcosx)+ce2bx\left(4b^{2} + 1\right)y^{2} = 2a\left(sinx + 2bcosx\right) + ce^{-2bx}

Explanation

Solution

Let y2=zy^{2} = z ydydx=12dzdxy \frac{dy}{dx}=\frac{1}{2} \frac{dz}{dx} dzdx+2bz=2acosx\frac{dz}{dx}+2bz=2a\,cos\,x IF=e2bdx=e2bxIF=e^{2b\int dx}=e^{2bx} z.e2bx=2acosx.e2bx.dxz.e^{2bx}=\int\,2a\,cos\,x.e^{2bx}. dx y2e2bx=2a4b2+1(sinx+2bcosx)e2bx+cy^{2}e^{2bx}=\frac{2a}{4b^{2}+1}\left(sin\,x+2b\,cos\,x\right)e^{2bx}+c (4b2+1)y2=2a(sinx+2bcox)+ce2bx\left(4b^{2}+1\right)y^{2}=2a\left(sinx+2bcox\right)+ce^{-2bx}