Solveeit Logo

Question

Question: General solution of \(\tan\theta = \frac{1}{2}\left( \sqrt{3} - \frac{1}{\sqrt{3}} \right) = \frac{1...

General solution of tanθ=12(313)=13=tan(π6)\tan\theta = \frac{1}{2}\left( \sqrt{3} - \frac{1}{\sqrt{3}} \right) = \frac{1}{\sqrt{3}} = \tan\left( \frac{\pi}{6} \right) is.

A

\Rightarrow

B

θ=nπ+π6\theta = n\pi + \frac{\pi}{6}

C

\therefore

D

0<θ<2π0 < \theta < 2\pi

Answer

\Rightarrow

Explanation

Solution

tan5θ=tan(π22θ)\tan 5 \theta = \tan \left( \frac { \pi } { 2 } - 2 \theta \right) sin2θ=cos3θ\sin 2\theta = \cos 3\theta \Rightarrow

3θ=2nπ±(π22θ)3\theta = 2n\pi \pm \left( \frac{\pi}{2} - 2\theta \right) θ=2nπ5+π10\Rightarrow \theta = \frac{2n\pi}{5} + \frac{\pi}{10} θ=2nππ2\theta = 2n\pi - \frac{\pi}{2}.