Question
Question: General solution of \[\tan \theta + \tan 4\theta + \tan 7\theta = \tan \theta \tan 4\theta \tan 7\th...
General solution of tanθ+tan4θ+tan7θ=tanθtan4θtan7θ is
a. θ=n12π where, n∈Z
b. θ=n9π where, n∈Z
c. θ=nπ+12π where, n∈Z
d. none of these
Solution
To deal with this problem we will use the help of the general formula of
1−tanAtanBtanA+tanB=tan(A+B). We will then use the case of x=y+nπ for, tanx=tany. Then analyzing the options, we will get the needed answer.
Complete step-by-step answer:
We have,
tanθ+tan4θ+tan7θ=tanθtan4θtan7θ
Changing sides, we get,
⇒tanθ+tan4θ=tanθtan4θtan7θ−tan7θ
Taking −tan7θ common we get,
⇒tanθ+tan4θ=−tan7θ(1−tanθtan4θ)
Dividing both sides with, 1−tanθtan4θ we get,
⇒1−tanθtan4θtanθ+tan4θ=−tan7θ
Since, 1−tanAtanBtanA+tanB=tan(A+B)
⇒tan(θ+4θ)=−tan7θ
On Adding terms in bracket, we get,
⇒tan5θ=tan(−7θ)
As, x=y+nπ for, tanx=tany, we get,
⇒5θ=(−7θ)+nπ
On simplification we get,
⇒12θ=nπ
∴θ=12nπ, ∀n∈Z
Hence, option (a) is correct.
Note: We have,
tan θ = tan∝
Using tanθ=cosθsin θ , we get,
⇒cosθsin θ − cos∝sin∝= 0
On taking LCM we get,
⇒cos θ cos∝(sin θ cos∝− cos θ sin∝)= 0
Using sin (θ −∝)=sin θ cos∝− cos θ sin∝ , we get,
⇒cos θ cos∝sin (θ −∝)= 0
On simplification we get,
⇒sin (θ −∝) = 0
⇒ (θ − ∝) = nπ,where n∈Z (i.e., n = 0, ± 1, ± 2, ± 3,…….), [Since we know that the θ = nπ, n∈Z is the general solution of the given equation sin θ = 0]
⇒θ = nπ +∝, where n∈Z (i.e., n = 0, ± 1, ± 2, ± 3,…….),