Solveeit Logo

Question

Mathematics Question on Differential equations

General solution of (x+y)2dydx=a2,a0\left(x+y\right)^{2} \frac{dy}{dx} = a^{2}, a \ne 0 is (c is an arbitrary constant)

A

xa=tanya+c\frac{x}{a} = tan \frac{y}{a} + c

B

tanxy=ctanxy = c

C

tan(x+y)=ctan \left(x + y\right) = c

D

tany+ca=x+yatan \frac{y+c}{a} = \frac{x+y}{a}

Answer

tany+ca=x+yatan \frac{y+c}{a} = \frac{x+y}{a}

Explanation

Solution

x+y=z,dydx=dzdx1x + y = z, \Rightarrow \frac{dy}{dx} = \frac{dz}{dx} - 1
z2dza2+z2=dx\Rightarrow\, \frac{z^{2}dz}{a^{2}+z^{2}} = dx
Integrating
x+yatan1x+ya=x+c,tan(yc1a)=x+ya\Rightarrow\,x+y-a\,tan^{-1} \frac{x+y}{a} = x+c, \quad\Rightarrow\,tan \left(\frac{y-c_{1}}{a}\right) = \frac{x+y}{a}
tan(y+ca)=x+ya(c1=c)\Rightarrow\,tan\left(\frac{y+c}{a}\right) = \frac{x+y}{a}\quad\quad\left(c_{1} = -c\right)